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Abstract

For a positive integer k, a book (with k pages) is a topological space consisting of a spine,

which is a line, and k pages, which are half-planes with the spine as its boundary. We say

that a graph G admits a k-page book embedding or is k-page book embeddable if there exists

a linear ordering of the vertices on the spine and one can assign the edges of G to k pages

such that no two edges of the same page cross. Yannakakis proved that every plane graph

admits a 4-page book embedding, and using it, Nakamoto and Nozawa showed that every

graph on the projective plane admits a 9-page book embedding. In this paper, we improve

the latter result to 6-page embedding. Furthermore, we also prove that every graph on the

projective plane admits a 3-page book embedding if it is 5-connected, and a 5-page book

embedding if it is 4-connected. Our idea of the proofs is to use a “Tutte path”, which is very

different from previous ones.
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1 Introduction

For a positive integer k, a book (with k pages) is a topological space consisting of a spine, which

is a line, and k pages, which are half-planes with the spine as its boundary. We say that a graph

G admits a k-page book embedding or is k-page book embeddable if there exists a linear ordering

of the vertices on the spine and one can assign the edges to k pages such that no two edges of

the same page cross. Recall that two edges a1a2 and b1b2 cross at a sequence Q of vertices if

the vertices a1, a2, b1 and b2 are all distinct and they appear on Q in the order ai, bj, a3−i, b3−j or

bj, ai, b3−j, a3−i for some i, j ∈ {1, 2}. The pagenumber (or sometimes called the stack number or

the book thickness) of a graph G is the minimum of k such that G is k-page book embeddable.

This notion was first introduced by Bernhart and Kainen [2]. Since a book embedding is much

concerned with theoretical computer science, such as VLSI design [4, 16], we are interested in

bounding the pagenumber. Actually, a number of researchers have established upper bounds of

the pagenumber for some graph classes, for example, complete bipartite graphs [8, 14], regular

graphs [3, 4], and k-trees [5, 9, 23]. Several algorithms to find an embedding of a given graph into

a book with a few pages were also presented [12, 19].
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On the other hand, the pagenumber has been widely studied from the aspect of graphs on

surfaces. In fact, a graph G is 1-page embeddable if and only if G is outer planar, and a graph G

is 2-page embeddable if and only if G is a subgraph of a Hamiltonian planar graph (see [2]). In

this sense, the pagenumber is closely related to graphs on surfaces.

Bernhart and Kainen [2] first conjectured that the pagenumber of planar graphs could be large

enough. However, this conjecture was disproved by Buss and Shor [3], who proved that every

planar graph is 9-page embeddable. Later this upper bound was improved to seven by Heath [10],

and finally, Yannakakis [24] showed that every planar graph has the pagenumber at most four. He

[24] also announced that there exists a planar graph which is not 3-page book embeddable, but

no proofs appeared yet, and hence we cannot verify that. For graphs on the torus, the algorithm

given by Heath and Istrail [11] guaranteed the existence of 13-page book embedding of a toroidal

graph. Endo [7] later improved this to 7-page book embedding. For a graph on the orientable

surface of genus g, Heath and Istrail [11] proved that its pagenumber is O(g), and later, Melitz [13]

improved this result to O(
√
g). Note that there exists a graph of genus g with the pagenumber

Θ(
√
g), see [11].

In contrast with situations above, only few results are known about the pagenumber of graphs

on nonorientable surfaces. Heath and Istrail [11] have added a comment, in the paper giving

the O(g) bound for the pagenumber of graphs of orientable genus g, that every graph of nonori-

entable genus k is also O(k)-page embeddable. However, they did not describe the details for the

nonorientable case, and so we cannot verify whether it is true or not. Nakamoto and Nozawa [15]

proved that every graph on the projective plane is 9-page book embeddable. In this paper, we

improve their result as follows.

Theorem 1 Let G be a graph on the projective plane. Then all of the following hold;

(i) If G is 5-connected, then G has a 3-page book embedding.

(ii) If G is 4-connected, then G has a 5-page book embedding.

(iii) G has a 6-page book embedding.

For the proof of Theorem 1 (iii), we show Lemma 11 in Section 6.1, which implies that “every

planar graph admits a 6-page book embedding”. This statement is weaker than the one by

Yannakakis [24], but the strategy of our proof is very different, using Tutte paths (see Section

3.1 for the definition). This is a key idea of this paper, and in fact, this allow us to improve the

previous result and obtain Theorem 1. Note that Yannakakis’ result is so useful that it has been

used for the proofs of several results, e.g. [7, 11, 13, 15] (see also Section 2). We expect that this

idea will give better bounds for several other cases.

This paper is organized as follows: In the next section, we give a strategy of the proofs of

Theorem 1. In Section 3, we give some terminologies and lemmas used in the proofs of Theorem

1. Then we divide the remaining part into three sections, each of which corresponds to the 5-

connected case (Theorem 1 (i)), the 4-connected case (Theorem 1 (ii)), and the case without

connectivity condition (Theorem 1 (iii)), respectively. The proofs of Theorem 1 (i)–(iii) and some

lemmas are similar, but unfortunately each one has some their own particularities, and because

of that, we have not been able to combine them.
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2 The strategy of the proofs of Theorem 1

We here consider the ideas of the proofs. In fact, our proof of Theorem 1 is different from the

one by Nakamoto and Nozawa [15]. Their method is based on the decomposition of a graph on

the projective plane into two planar graphs D1 and D2 and a graph B on the Möbious band,

and then they used Yannakakis’ [24] result to D1 and D2, respectively. In fact, we sketchily need

four pages to the edges in D1, four pages to the edges in D2, together with some edges in B, and

one page to almost all edges in B. Then we totally obtain a 9-page book embedding. Note that,

because of the topologically property of the projective plane, they needed to decompose a graph

into D1, D2 and B.

On the other hand, the strategy of our proof is as follows: Similarly to the method by

Nakamoto and Nozawa, we first decompose a graph G on the projective plane into a plane graph

H and a graph on the Möbious band (Lemma 9). Then, instead of using Yannakakis’ result to

H, we take a suitable path T , namely a Tutte path, as a “main part” of the spine sequence.

(Lemma 5. See Section 3.1 for the definition of a Tutte path.) If G is 5-connected, then T must

be a Hamiltonian path, which gives a 2-page book embedding of H. (Recall that a graph admits

a 2-page book embedding if and only if it is a subgraph of planar Hamiltonian graph.) Thus,

together with an almost 1-page book embedding of the Möbious band part, we obtain a 3-page

book embedding of G, so Theorem 1 (i) holds. On the other hand, suppose that the connectivity

is not high enough (4-connected or less). In this case, T might not be a Hamiltonian path in H,

but the properties of a “Tutte path” guarantee that the vertices in H−V (T ) can be decomposed

into several parts, namely “T -bridges” with at most three attachments. For each T -bridges, we

prove the existence of suitable book embeddings (Lemmas 10 and 11), again using a Tutte path

and bridges inside. This means that, we obtain a book embedding of T -bridges, using Tutte paths

inductively. Then finally we substitute the vertices in each T -bridge to appropriate place of the

Tutte path T , and obtain a 6-page book embedding of the graph H. In addition, the edges in

E(G)−E(H) can be embedded into appropriate pages, without creating a crossings in each page.

3 Terminology and Lemmas used in our proofs

3.1 Terminologies

Formally, a k-page book embedding Σ of a graph G is defined as a pair Σ = (Q,E ) of a sequence Q

of the vertices of G and a partition E = {E1, . . . , Ek} of E(G) such that for any i with 1 ≤ i ≤ k,

any two edges in Ei does not cross at Q. For a book embedding Σ = (Q,E ) of a graph G, the

sequence Q is called the spine sequence of Σ.

Let G be a graph, and let Q be a sequence of vertices in G. For u, v ∈ V (Q), we denote

by Q[u, v], the subsequence of Q from u to v. In addition, Q(u, v] is the subsequence of Q

obtained from Q[u, v] by deleting the vertex u. Similarly, we define the subsequences Q[u, v) and

Q(u, v) of Q. We denote by
←−
Q the reverse sequence of Q. For two sequences Q1 = x0x1 · · · xk

and Q2 = y0y1 · · · yl of vertices with Q1 ∩ Q2 = ∅, we denote the sequence obtained by the

concatenation of Q1 and Q2 by Q1Q2, that is, Q1Q2 = x0x1 · · · xky0y1 · · · yl. In this paper, we

regard a path in G also as a sequence of vertices. Let T be a path in G. An edge e in G− E(T )

is a chord of T if e is not an edge in T but connects two vertices in T . Therefore, (with slightly

abuse of notation,) an edge e in G is a chord of a sequence T if e connects two non-consecutive
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vertices in T .

For a graph G and a vertex set S of G, the subgraph of G induced by S is denoted by G[S].

A path with end vertices a and b is called an a, b-path.

Let G be a connected plane graph. The outer walk of G is the closed walk bounding the outer

face of G. In particular, if the boundary of the outer face is a cycle, then it is called the outer

cycle of G. Let s and t be two vertices on the outer cycle C of a 2-connected plane graph, and

let T be a path in G connecting s and t. Then T divides the disk bounded by C into at least

two regions. Now we distinguish the regions bounded by cycles in C ∪ T regarding whether they

appear on the left side or the right side along the path T from s to t. Furthermore, all vertices

or edges not contained in T are also said to be on the left side or the right side of T , depending

on the property of their regions of C ∪ T .

A 2-connected plane graph G with the outer cycle C is said to be internally k-connected with

respect to C if for every vertex x in G−V (C), there exist k pairwise internally disjoint paths in G

connecting x and C such that the end vertices in C are all distinct. In other words, there exists

no vertex set that consists of at most k−1 vertices and separates some vertices in G−V (C) from

C. We sometimes use the term “internally k-connected” omitting “with respect to C”. When

k = 3, an internally 3-connected graph is also called a circuit graph.

A disk graph is a 2-connected graph embedded on a disk. A disk triangulation is a disk

subgraph in which all but the outer cycle are triangular. If the outer cycle of a disk triangulation

H is also triangular, then H is indeed a triangulation of the plane.

Let T be a subgraph of a graph G. A connected subgraph B of G is called a T -bridge, if either

• B consists of only an edge of G− E(T ) with both ends on T , or

• B is the subgraph induced by all edges in a component D of G− V (T ) and all edges from

D to T .

The former is said to be trivial, while the latter is non-trivial. For a T -bridge B of G, the vertices

in B ∩ T are the attachments of B (on T ). We say that T is a Tutte subgraph of G if every

T -bridge of G has at most three attachments on T . In addition, for a subgraph C of G, T is a

C-Tutte subgraph of G if T is a Tutte subgraph of G and every T -bridge of G containing an edge

of C has at most two attachments on T . (As such a subgraph C, we usually take the outer cycle.)

A Tutte path (resp., a Tutte cycle) in a graph is a path (resp., a cycle) that is a Tutte subgraph.

See [6] for more detail on Tutte subgraphs.

Note that if G is 3-connected internally 4-connected and a C-Tutte path T satisfies |T | ≥ 4,

then T is a Hamiltonian path in G. To see that, suppose that there exists a vertex in G− V (T ),

which implies the existence of a non-trivial T -bridge B of G. If B does not contain an edge in C,

then the attachments of B on T form a cut set of order at most three such that it separates the

non-attachments of B from other part of the graph, contradicting the internally 4-connectedness.

Thus, we may assume the B contains an edge in C. But in this case, the attachments of B form

a cut set of order two, contradicting the 3-connectedness of G.

3.2 Lemmas concerning a book embedding

It is well-known that a graph G admits a 2-page book embedding if and only if G is a subgraph

of a Hamiltonian plane graph. The following lemma is a crucial point of the “if” part, which was

shown by Bernhart and Kainen [2]. We will use this several times in our proofs.
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Lemma 2 Let G be a 2-connected plane graph with outer cycle C, let s, t ∈ V (C), let T be a

path connecting s and t, and let EL and ER be the sets of edges e in E(G[V (T )]) − E(T ) such

that e is placed on the left side (resp., the right side) of T , respectively. Then no two edges in

E(T ) ∪ EL (or in E(T ) ∪ ER) cross at the sequence T .

In fact, Lemma 2 gives a 2-page book embedding to a subgraph of a Hamiltonian planar graph

G: We may first assume that G is a triangulation, and hence G is 3-connected and Hamiltonian

itself. (Since otherwise, we can get a plane triangulation G̃ from G by adding edges suitably.

It is easy to see that if G̃ is 2-page embeddable, then so G is.) Let T ′ be a Hamiltonian cycle

in G. Choosing suitable triangle of G as the outer cycle C, we may further assume that T ′

contains an edge in C, say st. Then T = T ′ − st is a Hamiltonian path connecting s and t, and

E(G) is partitioned into the three sets E(T ), EL and ER, where EL and ER are defined as in

Lemma 2. Therefore, it follows from Lemma 2 that G has a 2-page book embedding (T,E ), where

E =
{
E(T ) ∪ EL, ER

}
.

Another basic idea to find a book embedding is the following. This can be proven directly

from the definition of crossing of two edges. We will use Lemma 3 several times.

Lemma 3 Let Q be a sequence of vertices of a graph G, let u, v ∈ V (G), and let a1a2, b1b2 be

two edges of G. If a1, a2 ∈ V
(
Q[u, v)

)
and b1, b2 ∈ V (Q) − V

(
Q(u, v)

)
, then the two edges a1a2

and b1b2 do not cross at Q.

3.3 Lemmas concerning Tutte paths

As we explained in the last part of Section 1, we will use a Tutte path in order to make it as a

“main part” of the spine sequence. In fact, the following two results guarantee the existence of

suitable Tutte paths. The first one was shown by Thomas and Yu [20, Theorem (2.7)]. (See also

[17, Lemma 3].) The second one is new and we prove it in this section.

Theorem 4 (Thomas and Yu [20]) Let G be a 2-connected plane graph, let C be the outer

cycle of G, and let e1, e2, e3 ∈ E(C). Then G has a C-Tutte cycle through e1, e2, e3.

Lemma 5 Let G be a 2-connected plane graph with outer cycle C, and let s, x, t and y be four

distinct vertices on C such that they appear in C in this clockwise order and xt ∈ E(G). Suppose

that G has a path from s to t through x and then y. Then G has a C-Tutte path from s to t

through x then y.

In order to prove Lemma 5, we need the next theorems. They are somewhat technical, but

they support several cases when we want to find a Tutte cycle or a Tutte path in certain graphs

on a surface. The first one was proved by Sanders [18]. Note that he showed only the 2-connected

case, but we can easily show the following, considering a block decomposition. See also [21] by

Thomassen. For the second one, see [20, Theorem (2.4)].

Theorem 6 (Sanders [18]) Let G be a connected plane graph, let C be the outer walk of G,

let x, y ∈ V (G) with x ̸= y, and let e ∈ E(C). Assume that G contains a path from x to y

through e. Then G has a C-Tutte path from x to y through e.
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Figure 1: The C ′-Tutte path T ′ from s to y through x, and B1, B2, B3 ∈ B̃.1

Theorem 7 (Thomas and Yu [20]) Let G be a connected plane graph, let C be the outer walk

of G, let x, y ∈ V (C) with x ̸= y, and let S ⊂ V (C) with |S| ≤ 2. Suppose that V (C[x, y])∩S = ∅.
Then G has a C-Tutte subgraph consisting of the vertices in S and a path T from x to y with

V (T ) ∩ S = ∅.

Proof of Lemma 5. Note that the subpath
←−
C [y, t] of C contains neither s nor x. Since G has a

path from s to t through x and then y, it follows from the planarity of G that G′ = G−V (
←−
C (y, t])

has a path from s to y through x. Let C ′ be the outer walk of the component of G′ containing

s, x and y. By Theorem 6 with specifying an appropriate edge incident with x as e, G′ has a

C ′-Tutte path T ′ from s to y through x. See Figure 1. Let

B = {B : B is a non-trivial
(
T ′ ∪

←−
C [y, t]

)
-bridge of G

having at least two attachments on
←−
C [y, t]}.

Let B ∈ B and let SB be the set of attachments of B on T ′. Since B has an attachment on←−
C [y, t], B−V

(←−
C (y, t]

)
is either a component of G′ or a T ′-bridge of G′ containing an edge in C ′.

Since T ′ is a C ′-Tutte path in G′, in either case, B− V
(←−
C (y, t]

)
has at most two attachments on

T ′, that is, |SB| ≤ 2. Let uB and vB the attachments of B on
←−
C [y, t] such that uB (resp., vB) is

as close to y (resp., t) on
←−
C [y, t] as possible. Since B has at least two attachments on

←−
C [y, t], we

have uB ̸= vB and
←−
C [uB, vB] is contained in

←−
C [y, t]. For B,B′ ∈ B, we write B′ ⪯ B if either

(i) B = B′, or (ii) B′ is contained in the disk bounded by P ∪
←−
C [uB, vB], where P is a path in

B connecting uB and vB. This is well-defined (not depending on the choice of P ). Since G is a

plane graph and
←−
C [y, t] is a subpath of the outer cycle C of G, the binary relation ⪯ is a partial

order on B. Let B̃ be the set of maximal elements of B with respect to the partial order ⪯. Again
by the planarity of G, we have the following; For any B,B′ ∈ B̃ with B ̸= B′,

←−
C [uB, vB] and←−

C [uB′ , vB′ ] are edge-disjoint.

1The region with diagonals from the right top to the left bottom represents the graph G′, while the ones with

diagonals from the left top to the right bottom represent non-trivial
(
T ′ ∪

←−
C [y, t]

)
-bridges of G, including B1, B2

and B3 that belong to B̃. The bold curve and lines represent the path T ′ ∪
←−
C [y, t], and the dashed curves bound

the graphs B∗
1 , B

∗
2 and B∗

3 , respectively.
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Figure 2: The C-Tutte path T from s to t through x and then y.

For B ∈ B̃, let B∗ be the subgraph of G induced by the union of all elements B′ ∈ B such that

B′ ⪯ B, together with
←−
C [uB, vB], and let CB be the outer walk of B∗. Note that CB contains

←−
C [uB, vB] and SB, and V

(←−
C [uB, vB]

)
∩ SB = ∅. By Theorem 7, B∗ has a CB-Tutte subgraph

consisting of the vertices in SB and a path TB from uB to vB with V (TB) ∩ SB = ∅.
Let T be a subgraph of G induced by

E(T ′) ∪
(
E
(←−
C [y, t]

)
−

∪
B∈B̃

E
(←−
C [uB, vB]

))
∪

∪
B∈B̃

E(TB).

See Figure 2. By the construction, T is a path in G from s to t through x then y. Let D be

a T -bridge of G. Then it is easy to see that D is either (i) a
(
TB ∪ SB

)
-bridge of B∗ for some

B ∈ B̃, or (ii) a
(
T ′∪
←−
C [y, t]

)
-bridge having at most one attachment on

←−
C [y, t]. If D satisfies (i),

then since TB ∪ SB is a CB-Tutte subgraph in B∗, D has at most three attachments and at most

two attachments if D contains an edge in
←−
C [uB, vB]. Note that E(C) ∩ E(B∗) ⊆ E

(←−
C [uB, vB]

)
.

Suppose that D satisfies (ii). If D has no attachment on
←−
C [y, t], then D is a T ′-bridge of G′,

and hence D has at most three attachments and at most two attachments if D contains an edge

in C ′. Note that E(C) ∩E(G′) ⊆ E(C ′). On the other hand, suppose that D has an attachment

on
←−
C [y, t]. Since D − V

(←−
C (y, t]

)
is a T ′-bridge containing an edge in C ′, D − V

(←−
C (y, t]

)
has at

most two attachments on T ′. Therefore, D has at most three attachments on T in total. Suppose

further that D has exactly three attachments on T and contains an edge in C. This implies that

D has at least two attachments on T that are contained in C. Since D has an attachment on←−
C [y, t] and x, y ∈ V (T ), it follows from the planarity that D has at least two attachments on
←−
C [y, x]. Recall that D has at most one attachment on

←−
C [y, t], and hence D has exactly two

attachments on
←−
C [y, x] one of which is x and the other is some vertex in

←−
C [y, t]. However, since

t ∈ V (T ) and xt ∈ E(C), D cannot contain an edge in C, a contradiction.

Therefore, in either case, D has at most three attachments and at most two attachments if D

contains an edge in C. Hence T is a C-Tutte path in G, and this completes the proof of Lemma

5. □
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3.4 A lemma concerning spanning disk triangulations in triangula-

tions on the projective plane

The following was proven by Nakamoto and Nozawa [15].

Lemma 8 (Nakamoto and Nozawa [15]) Let G be a triangulation on the projective plane.

Then G has two vertices x0 and y0 and three internally disjoint x0, y0-paths P,L and R such

that x0y0 ∈ E(G), L ∪ R bounds a disk triangulation of G containing P , and P ∪ x0y0 is a

noncontractible cycle on the projective plane.

Note that the last two conditions in Lemma 8 implies that x0y0 ̸∈ E(P )∪E(L)∪E(R). Using

Lemma 8, we show the following, which will give an efficient partition of edges into the disk graph

(namely H) and the graph on the Möbious band (namely G−E(H)). This will be the first step

to find a book embedding of graphs on the projective plane.

Lemma 9 Let G be a triangulation of the projective plane. Then G has a spanning disk trian-

gulation H with outer cycle C satisfying the following;

(G1) There exist four distinct vertices s, x, t and y on C such that they appear on C in that order,

xt ∈ E(C), st ∈ E(G)− E(H), and all vertices in C[y, s] are neighbors of x in G− E(H).

(G2) H has a path from s to t through x and then y.

(G3) Any edges in G − E(H) − Ex connect a vertex in C[s, x] and a vertex in
←−
C [y, t], where

Ex = {xz : z ∈ V
(
C(y, s]

)
}. Furthermore, no two edges in G − E(H) − Ex cross at the

sequence C[s, x]
←−
C [y, t].

(G4) If G is 5-connected, then H is 3-connected and internally 5-connected, sy ∈ E(G), and

Ex = {xs}.

(G5) If G is 4-connected, then H is an internally 4-connected disk triangulation, and in addition,

either {u, v} ∩ V
(
C[s, x]

)
̸= ∅ for any 2-cut {u, v} of H, or {u, v} ∩ V

(←−
C [y, t]

)
̸= ∅ for any

2-cut {u, v} of H.

Proof. Let G be a triangulation of the projective plane. It follows from Lemma 8 that G has

two vertices x0 and y0 and three internally disjoint x0, y0-paths P,L and R such that x0y0 ∈ E(G),

L ∪R bounds a disk triangulation, say H0, of G containing P , and P ∪ x0y0 is a noncontractible

cycle on the projective plane. Note that L ∪ R is the outer cycle of H0. We take such three

internally disjoint x0, y0-paths P,L and R so that neither L nor R do not have a chord. (If, for

example, L has a chord uv, then we can detour the path L through the edge uv.) Since G is a

triangulation, we see that H0 is internally 3-connected (and internally 4- or 5-connected if G is

4- or 5-connected, respectively). Suppose that H0 has a 2-cut {u, v}. Then since H0 is a disk

triangulation with the outer cycle L ∪ R, we have u, v ∈ V
(
L ∪ R

)
and uv ∈ E(H0). However,

this contradicts that neither L nor R do not have a chord (when u, v ∈ V (L) or u, v ∈ V (R)), or

the x0, y0-path P is contained in H0 and internally disjoint from L and R (when either u ∈ V (L)

and v ∈ V (R), or u ∈ V (R) and v ∈ V (L)). Therefore, we have that H0 is 3-connected.

Now we take a disk triangulation H of G with the outer cycle C such that
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(I) P is contained in H and V (P ) ∩ V (C) = {x0, y0}. (Therefore, x0y0 ̸∈ E(H) since H is a

disk triangulation.)

(II) If G is 5-connected, then H is 3-connected and internally 5-connected.

(III) IfG is 4-connected, thenH is an internally 4-connected graph such that {u, v} ⊆ V
(
C[y0, x0]

)
for any 2-cut {u, v} of H.

(IV) |E(H)| is as large as possible, subject to (I)–(III).

Note that H0 satisfies conditions (I)–(III), and hence we can take such a disk triangulation H.

The condition (I) implies that C is divided into two paths C[x0, y0] and C[y0, x0]. We will show

that H is a spanning disk triangulation satisfying all of the conditions (G1)–(G5).

We first show that H is a spanning disk triangulation of G. For the contrary, suppose that H

is not spanning, that is, there exists a vertex v in G− V (H).

Suppose that G is 5-connected. Then there exist internally disjoint five paths from v to C,

say P1, P2, P3, P4 and P5, where each Pi is a v, pi-path for some pi ∈ V (C) and pi ̸= pj for any

1 ≤ i < j ≤ 5. Taking such paths as short as possible, we may assume that none of the paths

P1, P2, P3, P4 and P5 have a chord. By symmetry, we may further assume that p1, p2 and p3 are

distinct vertices on C[x0, y0], C[p1, p3] is a subpath of C[x0, y0], and p2 ∈ V
(
C(p1, p3)

)
. Now if

we let H ′ be the disk triangulation of G bounded by C ′ = P1 ∪ P3 ∪ C[p3, p1], then H ′ is a disk

triangulation of G satisfying condition (I) and E(H) ⊆ E(H ′). Furthermore, since P1 and P3 has

no chord, we see that C ′ has no inner chord, and hence H ′ is 3-connected. Therefore, H also

satisfies conditions (II) and (III), which contradicts the condition (IV) for H.

Suppose next that G is not 5-connected, but 4-connected. In this case, the condition (II) is

automatically satisfied. There exist internally disjoint four paths from v to C, say P1, P2, P3 and

P4, where each Pi is a v, pi-path for some pi ∈ V (C) and pi ̸= pj for any 1 ≤ i < j ≤ 4. Taking

such paths as short as possible, we may assume that none of the paths P1, P2, P3 and P4 have a

chord. By symmetry, we may further assume that either

(i) p1, p2 and p3 are distinct vertices on C[x0, y0], C[p1, p3] is a subpath of C[x0, y0], and p2 ∈
V
(
C(p1, p3)

)
, or

(ii) p1 and p2 are distinct vertices on C[y0, x0], and C[p1, p2] is a subpath of C[y0, x0].

In the case (i), let H ′ be the disk triangulation of G bounded by C ′ = P1 ∪ P3 ∪ C[p3, p1];

Otherwise, let H ′ be the disk triangulation of G bounded by C ′ = P1 ∪ P2 ∪ C[p2, p1]. In either

case, H ′ satisfies condition (I) and E(H) ⊆ E(H ′). Furthermore, if the case (i) occurs, then the

addition of the subgraph bounded by P1 ∪ P3 ∪ C[p1, p3] to H does not create new 2-cuts; if the

case (ii) occurs, then it might create new 2-cuts, say {u, v}, but we have u, v ∈ V
(
P1 ∪ P2

)
⊆

V
(
C ′[p1, p2]

)
⊆ V

(
C ′[y0, x0]

)
. In either case, H also satisfies condition (III), which contradicts

the condition (IV) for H.

Suppose finally that G is not 4-connected. In this case, the conditions (II) and (III) are

automatically satisfied. By the 3-connectedness of a triangulation G, there exist internally disjoint

three paths from v to C, say P1, P2, and P3, where each Pi is a v, pi-path for some pi ∈ V (C)

and pi ̸= pj for any 1 ≤ i < j ≤ 3. By symmetry, we may further assume that p1 and p2 are

distinct vertices on C[x0, y0], and C[p1, p2] is a subpath of C[x0, y0]. Now if we let H ′ be the disk

9
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Figure 3: Two figures of a graph G together with the vertices x0, y0, s, t, y
′ on C: In the left side,

the spanning disk triangulation H is centered with the outer part K, while the Möbious band

including K ′ is centered in the right side.

triangulation of G bounded by C ′ = P1 ∪ P2 ∪ C[p2, p1], then it follows from the same way as

in the previous paragraphs that H ′ satisfies condition (I) and E(H) ⊆ E(H ′), contradicting the

condition (IV).

This concludes that H is a spanning disk triangulation of G. Then we show that H satisfies

the conditions (G1)–(G5) for particular vertices x and y. In fact, the vertices x0 and y0 are

candidates of those vertices, respectively, but we need to change them when G is 5-connected.

(When G is not 5-connected, then as we will see later, we set x = x0 and y = y0.)

By condition (I), we have x0y0 ∈ E(G)− E(H). Let

W = C[y0, x0] ∪ x0y0 ∪
←−
C [y0, x0] ∪ x0y0

be the closed walk in G, and let K be the subgraph of G bounded by W . See Figure 3, where in

the right side, we put W = C[y1, x2]∪ x2y2 ∪
←−
C [y2, x1]∪ x1y1 with x0 = x1 = x2 and y0 = y1 = y2

in G, distinguishing two appearances of x0 and y0 in the boundary walk W of K. Note that

K has no inner edge e = uv with u, v ∈ V
(
C[y1, x2]

)
but uv /∈ E

(
C[y1, x2]

)
. (For otherwise,

replacing the path C[u, v] (or C[v, u]) with uv, we can modify H to increase |E(H)|, contradicting
to the condition (IV).) Similarly, K has no inner edge e = uv with u, v ∈ V

(←−
C [y2, x1]

)
but

uv /∈ E
(←−
C [y2, x1]

)
. Let y′ ∈ V

(
C[y1, x2]

)
and t ∈ V

(←−
C [y2, x1]

)
such that y1y

′ ∈ E
(
C[y1, x2]

)
and

x1t ∈ E
(←−
C [y2, x1]

)
. Note that y′, x0, t, y0 appear on C in this order. Since G is a triangulation,

either x1y
′ ∈ E(G) − E(H) or y1t ∈ E(G) − E(H). Here we suppose that the former occurs

and proceed the proof, but even when the latter occurs, the same argument can work. (In

the case y1t ∈ E(G) − E(H), the latter holds in the condition (G4), while the former holds if

x1y
′ ∈ E(G)− E(H). This is the only difference between two cases.)

We take a vertex s in C[y′, x2) so that sx1 ∈ E(G)−E(H) and C[s, x2] is as short as possible.

This choice implies that st ∈ E(G)−E(H). Since H is a disk triangulation and C[y1, x2] has no

chord, we see that all vertices in C[y1, s] are adjacent with x1 in G−E(H). Let x = x0 = x1(= x2).

If G is 5-connected, then we let y be the neighbor of s in C[y1, s]; Otherwise let y = y0 = y1(= y2).

Let Ex = {xz : z ∈ V
(
C(y, s]

)
}. This choice imply that the conditions (G1) and (G4) are satisfied.
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Then we check the condition (G2). Suppose first that G is not 5-connected. Then it follows

from the condition (I) and the fact x = x0 and y = y0 that P is a path from x to y in H −(
V (C)− {x, y}

)
. Then combining P , C[s, x] and

←−
C [y, t], we obtain a path in H from s to t that

passes through x and then y. This shows that the condition (G2) is satisfied.

Suppose next that G is 5-connected. It follows from the condition (II) that H is 3-connected,

and hence H has internally disjoint three paths from x to y. This, together with the planarity,

directly implies that H −
(
V (C)− {x, y}

)
has a path from x to y. Thus, by the same way as in

the previous paragraph, we can find a path in H from s to t that passes through x and then y.

Thus, the condition (G2) is satisfied also in this case.

Next, we show that the condition (G3) is satisfied. It is easy to see that each edge in G −
E(H)−Ex connects a vertex in C[s, x2] and a vertex in

←−
C [y2, t], which implies the first part of the

condition (G3). Let K ′ be the disk triangulation of G bounded by the cycle D′ = C[s, x2]∪x2y2∪←−
C [y2, t] ∪ ts. Note that D = C[s, x2] ∪ x2y2 ∪

←−
C [y2, t] is a Hamiltonian path in K ′ connecting s

and t, s, t ∈ V (D′), and all edges in K ′ appear in the same side of the path D or are contained

in D. Therefore, it follows from Lemma 2 that no two edges in K ′ cross at D. Note that

E(G)−E(H)−Ex ⊆ E(K ′). Therefore, since the sequence C[s, x]
←−
C [y, t] has the same sequence

as the path D, we see that no two edges in E(G)−E(H)−Ex cross at C[s, x]
←−
C [y, t], and hence

the condition (G3) also holds.

So, it only remains to show the condition (G5). Suppose that G is not 5-connected, G is

4-connected and there exists a 2-cut {u, v} of H. By the condition (III), we have {u, v}∩ ∈
V
(
C[y, x]

)
̸= ∅, and by the symmetry between u and v, we may assume that C[u, v] ⊆ C[y, x].

To show the condition (G5), suppose contrary that {u, v}∩ ∈ V
(
C[s, x]

)
= ∅, which directly

implies u, v ∈ V
(
C[y, s]

)
. It follows from the condition (G1) that all vertices in C[u, v] are

neighbors of x in G − E(H). This implies that u, v and x form a cut-set of G of size at most

three separating the non-attachments of B from others, which contradicts the 4-connectedness of

G. Therefore, B contains no edge in C[y, s], and hence B contains an edge in C[s, x].

This completes the proof of Lemma 9. □

4 5-connected case

Proof of Theorem 1 (i). Let G be a 5-connected graph on the projective plane. We first show

that we may assume that G is a triangulation. Suppose that G is not triangulation. Then G has

a facial cycle v1v2 · · · vkv1 for some k ≥ 4.

If k ≥ 5, then let G̃ be the graph obtained from G by adding a new vertex z inside of the face

bounded by v1v2 · · · vkv1 and joining z to all the vertices v1, v2, . . . , vk. Since k ≥ 5, it is easy to

see that G̃ is also 5-connected. Furthermore, if G̃ is 3-page embeddable, then so G is. Therefore,

we may assume that G does not has a facial cycle of length at least 5. So, assume that k = 4.

If G has no edge connecting v1 and v3, then we can add the edge v1v3 through the face, keeping

the embedding on the projective plane. Note that the new graph, say G̃, is 5-connected, and if G̃

is 3-page embeddable, then so G is. Thus, we may assume that v1v3 ∈ E(G). By symmetry, we

may also assume that v2v4 ∈ E(G). These two imply that G contains a copy of K4 as a subgraph,

and is embedded on the projective plane so that it has only three quadrangular faces (one of

which is the face bounded by v1v2v3v4v1). Since G is 5-connected, the regions corresponding
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Figure 4: A 3-page book embedding of a 5-connected graph on the projective plane. 2

those three quadrangular faces cannot contain any vertices in G, which implies that G is itself

K4, a contradiction. Therefore, we may assume that G is a triangulation.

By Lemma 9, G has a spanning disk triangulation H with outer cycle C satisfying the condi-

tions (G1)–(G5).

By condition (G3), H has a path from s to t that passes through x, and then y. Then it

follows from Theorem 5 that H has a C-Tutte path T from s to t that passes through x, and then

y. Since H is 3-connected and internally 5-connected, T is a Hamiltonian path in H. It follows

from the planarity that the vertices C[s, x]
←−
C [y, t] appear in T in this order. By the symmetry,

we may assume that the edges in C[s, x] are contained in T or placed on the left side of T . See

Figure 4. Thus, the edges in
←−
C [y, t] are contained in T or placed on the right side of T . Let EL

(resp., ER) be the sets of edges e in E(H)−E(T ) such that e is placed in the left side (resp., the

right side). Since T is a Hamiltonian path in H, we have E(H) = E(T ) ∪ EL ∪ ER.

Let E1 = E(T ) ∪ ER, E2 = EL ∪ Ex, and E3 = E(G)− E(H)− Ex.

Note that E =
{
E1, E2, E3

}
is indeed a partition of E(G). It follows from Lemma 2 and

condition (G3) that no two edges in E1, or in E2 − Ex, or in E3 cross at T . (Recall that

C[s, x]
←−
C [y, t] appear in T in that order.) Therefore, since Ex = {sx}, it suffices to prove that no

edge in EL crosses sx at T .

Let a1a2 ∈ EL. Then we see that either a1, a2 ∈ V
(
T [s, x]

)
or a1, a2 ∈ V

(
T [x, t]

)
, which

implies that in either case, the edges a1a2 and sx do not cross at T by Lemma 3. Therefore, this

completes the proof of Theorem 1 (i). □

2In all figures in this paper, the number in a square indicates the index of the set Ei containing those edges.
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5 4-connected case

5.1 A crucial lemma for 4-connected case

To prove Theorem 1 (ii), we first show the following lemma, which will be used to find a suitable

book embedding of inside of each T -bridge.

Lemma 10 Let H be an internally 4-connected disk triangulation with outer cycle C, and let u, v

be two vertices on C with uv ∈ E(C). We give an orientation to C so that C[v, u] consists of only

the edge uv. Then H − uv has a 3-page book embedding Σ = (Q,E ), where E = {E1, E2, E3},
satisfying the following;

(P1) u is the first vertex in Q and v is the last vertex,

(P2) the vertices on C[u, v] appear in Q in this order, and

(P3) all edges connecting {u, v} and V (H)− {u, v} belong to E1.

Proof of Lemma 10. We show Lemma 10 by induction on |H|. If |H| = 3, then it is easy to

see that Lemma 10 holds. Hence we may assume that |H| ≥ 4. Let e1 and e2 be the two edges in

C such that e1 is incident with u and e1 ̸= uv, and e2 is incident with v and e2 ̸= uv. If |C| = 3,

(so C consists of only the three edges uv, e1 and e2,) then the internally 4-connectedness of H

implies that V (H)− V (C) = ∅, which contradicts that |H| ≥ 4. Therefore, we have |C| ≥ 4.

It follows from Theorem 4 that H has a C-Tutte cycle T ′ through uv, e1 and e2. Let T be

the path obtained from T ′ by deleting the edge uv. By symmetry, we may assume that T has a

direction from u to v and the interior of T ′ is placed on the right side of T . Note that the vertices

in V
(
C[u, v]

)
∩ V (T ) appear in T in the order of C[u, v] and all the edges in C[u, v] are either

contained in T or placed on the left side of T .

Let EL and ER be the sets of edges e in E(H[V (T )])−E(T ) such that e is placed on the left side

(resp., the right side) of T . Note that E(H[V (T )]) = E(T )∪EL∪ER and E(C[u, v]) ⊆ E(T )∪EL.

Since uv, e1, e2 ∈ E(T ′) and the interior of T ′ is placed on the right side of T , we have the following

claim.

Claim 1 All edges incident with u or v, except for uv, e1, e2, are contained in ER.

Here we will regard T as a “main part” of a desired sequence Q of V (H), and appropriately

insert the vertices in H − V (T ). Let

B = {B : B is a non-trivial T -bridge of H}.

By the definition of non-trivial T -bridges, every edge inH is either an edge connecting two vertices

in T or contained in B for some B ∈ B, and hence

E(H)− E
(
H[V (T )]

)
=

∪
B∈B

E(B).

Let B ∈ B. We first claim that B contains an edge in C[u, v] (so, B is placed on the left side)

and has exactly two attachments on T . Since T ′ is a C-Tutte cycle in H, B has at most three

attachments on T . So, if B does not contain an edge in C[u, v], then the attachments of B form a
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cut-set of H of size at most three such that it separates the non-attachments of B from C, which

contradicts that H is internally 4-connected. Therefore, B contains an edge in C[u, v]. Since T ′

is a C-Tutte cycle in H, B has at most two attachments on T . Since H is 2-connected, B has

exactly two attachments on T . Therefore, the claim holds.

Let uB and vB be the two attachments of B on T . Since H is a disk triangulation, we see

that uBvB ∈ E(H) but uBvB ̸∈ E(B). We may assume that u, uB, vB and v appear in T in this

order. (This choice implies that for any B1, B2 ∈ B with B1 ̸= B2, we have uB1 ̸= uB2 .) Note that

B + {vBuB} is an internally 4-connected disk triangulation with outer cycle C[uB, vB] ∪ vBuB,

say CB. Then by the induction hypothesis to B + {vBuB} with uB, vB playing the roles of u and

v, respectively, B has a 3-page book embedding (QB,EB), where EB = {E1
B, E

2
B, E

3
B}, such that

(P1) uB is the first vertex in QB and vB is the last vertex, (P2) the vertices on CB[uB, vB] appear

in QB in this order, and (P3) all edges connecting {uB, vB} and B − {uB, vB} belong to E1
B.

Now we insert the sequence QB(uB, vB) to T just after uB in T . That is, we obtain the new

sequence

T [u, uB] QB(uB, vB) T (uB, v].

We do the above insertion for all B ∈ B independently, and let Q be the obtained sequence of the

vertices in H. Note that Q contains all vertices of H, and Q satisfies condition (P1). Since the

vertices in V
(
C[u, v]

)
∩ V (T ) appear in T in the order of C[u, v], it follows from condition (P2)

for each B ∈ B and the construction of Q that Q also satisfies condition (P2). Now we partition

all edges in H − {uv} into three sets as follows; Let

E1 =
(
ER − {uv}

)
∪

∪
B∈B

E2
B, E2 = E(T ) ∪ EL ∪

∪
B∈B

E3
B, and E3 =

∪
B∈B

E1
B.

See Figure 5. Recall that E
(
H[V (T )]

)
= E(T )∪EL∪ER and E(H)−E

(
H[V (T )]

)
=

∪
B∈B E(B).

Since {E1
B, E

2
B, E

3
B} is a partition of E(B), {E1, E2, E3} is indeed a partition of E(H) − {uv}.

Furthermore, it follows from Claim 1 that the partition satisfies condition (P3). Thus, it suffices

to prove that no two edges in Ei cross at Q for any 1 ≤ i ≤ 3. Let i ∈ {1, 2, 3} and a1a2, b1b2 ∈ Ei.

Case 1. i = 1.

If a1a2, b1b2 ∈ ER − {uv}, then it follows from Lemma 2 that they do not cross at T , and

hence at Q. Therefore, we may assume that a1a2 is contained in E2
B for some T -bridge B in B.

By condition (P3) for B, we see that {a1, a2} ∩ {uB, vB} = ∅, and hence a1, a2 ∈ V
(
QB(uB, vB)

)
.

Note that QB(uB, vB) is a subsequence of Q. If b1b2 ∈ E2
B, then since (QB,EB) is a 3-page book

embedding of B, the edges a1a2 and b1b2 do not cross at QB, and hence at Q; Otherwise it follows

from the construction of Q that b1, b2 ∈ V (Q)−V
(
QB(uB, vB)

)
, and hence it follows from Lemma

3 that a1a2 and b1b2 do not cross at Q, neither. In either case, we see that a1a2 and b1b2 do not

cross at Q, and we are done.

Case 2. i = 2.

This case can be proven by the same way as Case 1. If a1a2, b1b2 ∈ E(T ) ∪ EL, then it

follows from Lemma 2 that they do not cross at T , and hence at Q. Therefore, we may assume

that a1a2 is contained in E3
B for some T -bridge B in B. By condition (P3) for B, we see that

4In all remaining figures in this paper, each region with diagonals from the right top to the left bottom represents

a non-trivial T -bridge.
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{a1, a2} ∩ {uB, vB} = ∅, and hence a1, a2 ∈ V
(
QB(uB, vB)

)
. If b1b2 ∈ E3

B, then since (QB,EB)

is a 3-page book embedding of B, the edges a1a2 and b1b2 do not cross at QB, and hence at Q;

Otherwise by the construction of Q, we have b1, b2 ∈ V (Q)−V
(
QB(uB, vB)

)
, and hence it follows

from Lemma 3 that a1a2 and b1b2 do not cross at Q, neither. In either case, we see that a1a2 and

b1b2 do not cross at Q, and we are done.

Case 3. i = 3.

Note that a1a2 is contained in E1
B for some T -bridge B in B. If b1b2 ∈ E1

B, then since (QB,EB)

is a 3-page book embedding of B, the edges a1a2 and b1b2 do not cross at QB, and hence at Q.

Thus, we may assume that b1b2 ̸∈ E1
B, and hence it follows from the construction of Q that

b1, b2 ∈ V (Q) − V
(
QB(uB, vB)

)
. So, if a1 ̸= vB and a2 ̸= vB, then a1, a2 ∈ V

(
QB[uB, vB)

)
, and

hence it follows from Lemma 3 that a1a2 and b1b2 do not cross at Q. Therefore, by the symmetry

between a1 and a2, we may assume that a2 = vB. By the symmetry between a1a2 and b1b2, we may

also assume that b1b2 ∈ E1
B′ and b2 = vB′ for some B′ ∈ B with B′ ̸= B. Note that both of the

edges uBvB and uB′vB′ are contained in E(T ) ∪EL, and hence it follows from Lemma 2 that the

vertices uB, vB, uB′ , vB′ appear in T in this order or in the order of uB′ , vB′ , uB, vB. Note that it

follows from construction of Q that the vertices in QB(uB, vB) (resp., the vertices in QB′(uB′ , vB′))

appear just after uB (resp., uB′). Since a1 ∈ V
(
QB(uB, vB)

)
and b1 ∈ V

(
QB′(uB′ , vB′)

)
, we see

that the edges a1a2 and b1b2 do not cross at Q. This completes the proof of Case 3, and the proof

of Lemma 10. □

5.2 Proof of Theorem 1 (ii)

Let G be a 4-connected graph on the projective plane. To find a book embedding of G, we may

assume that G is a triangulation. (If G is not a triangulation, then we can get a 4-connected

triangulation G̃ from G by adding vertices and edges suitably. It is easy to see that if G̃ is 4-page

embeddable, then so G is.) By Lemma 9, G has a spanning disk triangulation H with outer cycle
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C satisfying conditions (G1)–(G5).

By condition (G2), H has a path from s to t that passes through x, and then y. Then it

follows from Theorem 5 that H has a C-Tutte path T from s to t that passes through x, and

then y. By the symmetry, we may assume that the edges in C[s, x] are contained in T or placed

on the left side of T . Thus, the edges in
←−
C [s, t] are contained in T or placed on the right side of

T . Let EL (resp., ER) be the sets of edges e in E(H)−E(T ) such that e is placed in the left side

(resp., the right side), respectively. Note that E(H[V (T )]) = E(T ) ∪ EL ∪ ER.

Let B = {B : B is a non-trivial T -bridge of H}.

By the definition of non-trivial T -bridges, any edge in H is either an edge connecting two vertices

in T or contained in B for some B ∈ B, and hence

E(H)− E
(
H[V (T )]

)
=

∪
B∈B

E(B).

We first claim that either B contains an edge in C[s, x] for any B ∈ B, or B contains an edge

in
←−
C [y, t] for any B ∈ B. Since T is a C-Tutte path in H, B has at most three attachments on

T . So, if B does not contain an edge in C, then the attachments of B form a cut-set of G of size

at most three such that it separates the non-attachments of B from others, which contradicts the

4-connectedness of G. Therefore, B contains an edge in C. Furthermore, since T is a C-Tutte

path in H, B has at most two attachments on T . Since G is 2-connected, B has exactly two

attachments on T . It follows from the condition (G5) that B contains an edge in C[s, x] or in
←−
C [y, t]. Therefore, the claim holds.

Since two cases are symmetric, we may assume that the former holds, that is, B contains an

edge in C[s, x] for any B ∈ B. This implies that any B ∈ B has exactly two attachments on

T [s, x].

Let uB and vB be the two attachments of B. Since H is a disk triangulation, we see that

uBvB ∈ E(H) but uBvB ̸∈ E(B). By the symmetry, we may assume that s, uB, vB and x appear

in T in this order (Possibly s = uB and/or vB = x). This choice implies that C[uB, vB] ⊆ C[s, x],

and for any B1, B2 ∈ B with B1 ̸= B2, we have uB1 ̸= uB2 . Note that B+ {vBuB} is an internally

4-connected disk triangulation with outer cycle C[uB, vB] ∪ vBuB, say CB. Then it follows from

Lemma 10 that B has a 3-page book embedding (QB,EB), where EB = {E1
B, E

2
B, E

3
B} such that

(P1) uB is the first vertex in QB and vB is the last vertex, (P2) the vertices on CB[uB, vB] appear

in QB in this order, and (P3) all edges connecting {uB, vB} and B − {uB, vB} belong to E1
B.

Now we insert the sequence QB(uB, vB) to T just after uB in T . That is, we obtain the new

sequence

T [s, uB] QB(uB, vB) T (uB, t].

We do the above insertion for all B ∈ B independently, and let Q be the obtained sequence of

the vertices in G. Note that Q contains all vertices of G. Since the vertices C[s, x]∩V (T ) appear

in T in the order, it follows from condition (P2) for each B ∈ B and the construction of Q that

Q contains the vertices in C[s, x]
←−
C [y, t] in this order.

Let
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E1 = ER ∪
∪
B∈B

E2
B, E2 = E(T ) ∪ EL ∪

∪
B∈B

E3
B,

E3 =
∪
B∈B

E1
B, E4 = E(G)− E(H)− Ex. and E5 = Ex.

See Figure 6. Recall that E
(
H[V (T )]

)
= E(T ) ∪ EL ∪ ER and E(H) − E

(
H[V (T )]

)
=∪

B∈B E(B). Thus, since {E1
B, E

2
B, E

3
B} is a partition of E(B), {E1, E2, E3} is indeed a partition

of E(G). So, it suffices to prove that no two edges in Ei cross at Q for any 1 ≤ i ≤ 5. Indeed,

we can prove this by the same way as Case 1–3 in the proof of Lemma 10 (for 1 ≤ i ≤ 3), by

the condition (G3) (for i = 4), and by the fact that all edges in Ex share x as an end vertex (for

i = 5). This completes the proof Theorem 1 (ii). □

6 The case without connectivity assumption

6.1 A crucial lemma

To show Theorem 1 (iii), we need the following lemma. (See Figure 7.)

Lemma 11 Let H be a plane triangulation such that |H| ≥ 4, let uvw be the outer cycle of

H, and let C be the outer cycle of H − w. We give an orientation to C so that C[v, u] consists

of only the edge uv. Then H − {uv, vw,wu} has a 6-page book embedding Σ = (Q,E ), where

E = {E1, . . . , E6}, satisfying the following;

(Q1) u is the first vertex in Q, v is the second last vertex, and w is the last vertex,

(Q2) the vertices on C[u, v] appear in Q in this order,

(Q3) all edges connecting u and V (H)− {u, v, w} belong to E1,

(Q4) all edges connecting v and V (H)− {u, v, w} belong to E2, and

(Q5) all edges connecting w and V (H)− {u, v, w} belong to E3.

Proof of Lemma 11. We show Lemma 11 by induction on |H|. If |H| = 4, then it is easy to

see that Lemma 11 holds. Hence we may assume that |H| ≥ 5. Let H ′ = H −w. Since any plane

triangulation is 3-connected, H ′ is 2-connected.

Note that C is the outer cycle of H ′ with uv ∈ E(C). Let e1 and e2 be the two edges in C

such that e1 is incident with u and e1 ̸= uv, and e2 is incident with v and e2 ̸= uv. It follows

from Theorem 4 that H ′ has a C-Tutte cycle T ′ through uv, e1 and e2. By the symmetry, we may

assume that the interior of T ′ is placed on the right side of T ′. (See Figure 8.)

We may assume that T ′ − {uv} is a sequence starting from u and ending at v, and let T be

the sequence obtained from T ′ − {uv} by adding the vertex w in the last. Note that T satisfies

the condition (Q1), and we see that the vertices in V
(
C[u, v]

)
∩ V (T ′) appear in T in the order

of C[u, v]. Since uv, e1, e2 ∈ E(T ′) and the interior of T ′ is placed on the right side of T ′, the

following claim holds.

17



w

vu

C[u, v]
u v w

1 2 3

Figure 7: A 6-page book embedding desired in Theorem 11.

w

vu Right
T ′

e2e1

Left

Figure 8: A C-Tutte cycle T ′ through uv, e1
and e2.

Right

z

u

v

B1

Bq

Left

vBp = vBp+1

Bp+1

wBq

wBp = vBp−1

wB1

vB1

vBq

Bp−1

wBp+1

Bp

wBp−1

w

Figure 9: The non-trivial T -bridges B1, B2, . . . , Bp

in BL
z and Bp+1, . . . , Bq in BR

z .
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Claim 2 All edges incident with u or v, except for uv, uw,wv, e1, e2, are placed on the right side

of T ′, and all edges incident with w are placed on the left side of T ′.

Let E1
0 , E

2
0 , E

3
0 and E5

0 be the sets of edges e in E(H[V (T )])− {uv, vw,wu} such that

• if e is incident with v, then e ∈ E2
0 ,

• if e is incident with w, then e ∈ E3
0 ,

• if e is placed on the right side of T or a chord of T and e is not incident with v, then e ∈ E1
0 ,

and

• if e is placed on the left side of T and e is not incident with w, then e ∈ E5
0 ,

respectively. Note that the set
{
E1

0 , E
2
0 , E

3
0 , E

5
0

}
is indeed a partition of E(H[V (T )]) − E(T ) −

{uv, vw,wu}. By Claim 2, all edges incident with u are contained in E1
0 , except for uv.

Here we will regard T as a “main part” of a desired sequence Q of V (H), and appropriately

insert the vertices in H but not in T . To do that, we need some definitions. Let

B = {B : B is a non-trivial T -bridge of H}.

By the definition of non-trivial T -bridges, each edge in H is either an edge connecting two vertices

in T or contained in B for some B ∈ B, and hence

E(H)− E
(
H[V (T )]

)
=

∪
B∈B

E(B).

Let B ∈ B. Note that B is a T -bridge of H. We first claim that B has exactly three

attachments on T . Since H is 3-connected, B has at least three attachments on T . So, if w is not

an attachment of B on T , then B has exactly three attachments on T ′, and hence on T . (Recall

that T ′ is a C-Tutte cycle in H ′.) So, suppose that w is an attachment of B on T . Then B − w

is a T ′-bridge of H ′ and contains an edge in C. Again since T ′ is a C-Tutte cycle in H ′, B has

exactly two attachments on T ′, and hence B has exactly three attachments on T ′ one of which is

w. Therefore, the claim holds.

Let uB, vB and wB be the three attachments of B. Since H is a disk triangulation, we see

that uBvB, vBwB, wBuB ∈ E(H) but uBvB, vBwB, wBuB ̸∈ E(B). We may assume that uB, vB
and wB appear in T in this order. This condition and the places of u, v and w in T directly imply

that uB ̸= v, w, vB ̸= u,w and wB ̸= u. Furthermore, if v is an attachment of B, then it follows

from Claim 2 that B is placed on the right side, which implies that w is not an attachment of B.

Therefore, we also have vB ̸= v. This argument implies the following claim.

Claim 3 (1) If u is an attachment of a non-trivial T -bridge B in B, then u = uB.

(2) If v is an attachment of a non-trivial T -bridge B in B, then v = wB.

(3) If w is an attachment of a non-trivial T -bridge B in B, then w = wB.
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For B ∈ B, note that B + {uBvB, vBwB, wBuB} is a plane triangulation with outer cycle

uBvBwB. Let CB be the outer cycle of B + {uBvB} − w such that CB[vB, uB] consists of only

the edge uBvB. By the induction hypothesis to B + {uBvB, vBwB, wBuB} with uB, vB and wB

playing the roles of u, v and w, respectively, B has a 6-page book embedding (QB,EB), where

EB = {E1
B, . . . , E

6
B}, such that (Q1) uB is the first vertex in QB, vB is the second last vertex,

and wB is the last vertex, (Q2) the vertices on CB[uB, vB] appear in Q in this order, (Q3) all

edges connecting uB and V (B) − {uB, vB, wB} belong to E1
B, (Q4) all edges connecting vB and

V (B)− {uB, vB, wB} belong to E2
B, and (Q5) all edges connecting wB and V (B)− {uB, vB, wB}

belong to E3
B.

Here, we say that a non-trivial T -bridge B in B is a corner if wB = w. It is easy to see that B

is a corner if and only if B−{uB, vB, wB} contains a vertex in C[u, v]. Furthermore, the planarity

directly implies the following;

Claim 4 For each corner T -bridge B in B, we have CB[uB, vB] = C ∩ B, and uB ̸= uB′ for any

corner T -bridges B′ in B with B′ ̸= B.

Let z ∈ V (T ). Define BL
z (resp., BR

z ) as the set of non-trivial T -bridges B in B such that

uB = z and B is placed on the left side (resp., the right side) of T ′. Let B1, . . . , Bp be the elements

in BL
z along the clockwise order around z, where p = |BL

z |. (See Figure 9.) It follows from Claim

4 and the planarity that if there exists a corner T -bridge B in B with uB = z, then B = B1, and

furthermore,

the vertices u, z, vBp , wBp , vBp−1 , . . . , vB1 , wB1 , w appear in T in this order. (1)

(Possibly, wBp = vBp−1 , and/or · · · , and/or wB1 = w.) Similarly, let Bp+1, . . . , Bq be the elements

in BR
z along the clockwise order around z, where q = p + |BR

z |. (See Figure 9.) Again, it follows

from the planarity that

the vertices u, z, vBp+1 , wBp+1 , vBp+2 , . . . , vBq , wBq , v, w appear in T in this order. (2)

(Possibly, u = z, and/or wBp+1 = vBp+2 and/or · · · , and/or wBq = v.) Now we insert the sequence

QB1(z, vB1) QB2(z, vB2) · · · QBp(z, vBp) QBq(z, vBq) QBq−1(z, vBq−1) · · · QBp+1(z, vBp+1)

to T just after z in T . That is, we obtain the new sequence

T [u, z] QB1(z, vB1) · · · QBp(z, vBp) QBq(z, vBq) · · · QBp+1(z, vBp+1) T (z, w].

We do the above insertion for all z ∈ V (T ) independently, and let Q be the obtained sequence of

the vertices in H. By Claims 3 (2) and (3), v, w ̸= uB for any B ∈ B, and hence no vertices are

inserted after v. Therefore, Q satisfies the condition (Q1). Furthermore, it follows from Claim

4 and the condition (Q2) for QB that Q satisfies the condition (Q2). Now we will partition all

edges in H−{uv, vw,wu} into six sets so that no two edges in a same set cross at Q. To do that,

we first partite all edges in
∪

B∈BB into six sets E1
1 , . . . , E

6
1 as follows; Let
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u v

w = wB

e1 e2

B

B′

vB′

wB′uB′

uB

vB

1

4

21
2

3

5 6

5

3

Figure 10: A 6-page book embedding of a plane triangulation. The thick curve represents the

path T in H − w from u to v, and B,B′ ∈ B.

E1
1 =

∪
z∈V (T )

( ∪
B∈BL

z

E4
B ∪

∪
B∈BR

z

E1
B

)
, E2

1 =
∪

z∈V (T )

( ∪
B∈BL

z

E5
B ∪

∪
B∈BR

z

E3
B

)
,

E3
1 =

∪
z∈V (T )

( ∪
B∈BL

z

E3
B ∪

∪
B∈BR

z

E4
B

)
, E4

1 =
∪

z∈V (T )

( ∪
B∈BL

z

E6
B ∪

∪
B∈BR

z

E2
B

)
,

E5
1 =

∪
z∈V (T )

( ∪
B∈BL

z

E1
B ∪

∪
B∈BR

z

E5
B

)
, and E6

1 =
∪

z∈V (T )

( ∪
B∈BL

z

E2
B ∪

∪
B∈BR

z

E6
B

)
.

See Figure 10. Since EB = {E1
B, . . . , E

6
B} is a partition of E(B) for any B ∈ B, we see that

{E1
1 , . . . , E

6
1} is a partition of

∪
B∈BE(B) = E(H)−E

(
H[V (T )]

)
. For those sets E1

1 , . . . , E
6
1 , we

show the following claim.

Claim 5 For any integer i with 1 ≤ i ≤ 6, any two edges in Ei
1 do not cross at Q.

Proof. Let i ∈ {1, 2, 3, 4, 5, 6} and let a1a2 and b1b2 be two edges in Ei
1. By the definition of Ei

1,

the edge a1a2 is contained in some T -bridge B in B. If b1b2 ∈ E(B), then since the pair (QB,EB)

is a 6-page book embedding of B and a1a2, b1b2 ∈ Ej
B ∈ EB for some 1 ≤ j ≤ 6, we see that

a1a2 and b1b2 do not cross at QB. Since the vertices in QB appear in Q in the same order, a1a2
and b1b2 do not cross at Q, neither. Thus, we may assume that b1b2 ̸∈ E(B), which implies that

b1b2 ∈ E(B′) for some B′ ∈ B with B′ ̸= B. In particular, since the vertices in QB(uB, vB) appear

in Q consecutively, we have b1, b2 ∈ V (Q)−V
(
QB(uB, vB)

)
. Thus, if {a1, a2}∩{uB, vB, wB} = ∅,

then a1, a2 ∈ V
(
QB(uB, vB)

)
, and hence it follows from Lemma 3 that a1a2 and b1b2 do not cross

at Q. Therefore, we may assume that {a1, a2} ∩ {uB, vB, wB} ̸= ∅. By the symmetry between

a1a2 and b1b2, we may also assume that {b1, b2} ∩ {uB′ , vB′ , wB′} ≠ ∅.

Case 1. a1 = uB or a2 = uB or b1 = uB′ or b2 = uB′ .

Say a1 = uB by symmetry. It follows from the condition (Q3) for B that a1a2 ∈ E1
B. Then by

the definition of E1
1 , . . . , E

6
1 , we have a1a2 ∈ E1

1 ∪E5
1 , and hence i = 1, 5 and b1b2 ∈ E1

1 ∪E5
1 . Since

{b1, b2} ∩ {uB′ , vB′ , wB′} ̸= ∅, it follows from the conditions (Q3)–(Q5) for B′ and the definitions

of E1
1 and E5

1 that b1b2 ∈ E1
B′ , and either b1 = uB′ or b2 = uB′ . By the symmetry, we may

assume that b1 = uB′ . If uB = uB′ , then the edges a1a2 and b1b2 share the end vertex uB, and
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hence they do not cross at Q. Therefore, we may assume that uB ̸= uB′ . Then it follows from

the construction of Q that b1, b2 ̸∈ V
(
Q[uB, u

+
B)
)
, where u+

B is the successor of uB at T . Since

a1, a2 ∈ V
(
Q[uB, u

+
B)
)
, it follows from Lemma 3 that a1a2 and b1b2 do not cross at Q. This

completes the proof of Case 1.

Case 2. a1, a2 ̸= uB and b1, b2 ̸= uB′ .

By the condition of this case, we have {a1, a2} ∩ {vB, wB} ̸= ∅ and {b1, b2} ∩ {vB′ , wB′} ̸= ∅.
By the symmetry between a1 and a2, we may assume that a2 = vB or a2 = wB. Then it follows

from the conditions (Q3)–(Q5) for B that a1 ̸= uB and exactly one of the following holds;

(i) i = 2, a1a2 ∈ E3
B ⊆ E2

1 , a2 = wB and B ∈ BR
z for some z ∈ V (T ).

(ii) i = 3, a1a2 ∈ E3
B ⊆ E3

1 , a2 = wB and B ∈ BL
z for some z ∈ V (T ).

(iii) i = 4, a1a2 ∈ E2
B ⊆ E4

1 , a2 = vB and B ∈ BR
z for some z ∈ V (T ).

(iv) i = 6, a1a2 ∈ E2
B ⊆ E6

1 , a2 = vB and B ∈ BL
z for some z ∈ V (T ).

We here only prove the cases (i) and (ii), since the cases (iii) and (iv) can be shown in the same

way as the cases (i) and (ii), respectively. (Indeed, the only difference of those proofs are the

vertices vB and wB for a2 and b2. If we replace the vertex wB with vB and replace wB′ with vB′

in the following arguments, then we obtain the proofs of the cases (iii) and (iv), respectively.)

Case (i).

By the condition that i = 2 and the symmetry between a1a2 and b1b2, we may assume that

b1 ̸= uB′ and b2 = wB′ for some B′ ∈ BR
z′ and some z′ ∈ V (T ) with B′ ̸= B.

Suppose that z ̸= z′. By the symmetry between a1a2 and b1b2, we may assume that z

is closer to u in T than z′. (That is, the vertices u, z and z′ appear in T in this order,

possibly u = z.) Since both B and B′ are placed on the right side of T , it follows from

Lemma 2 that the edges zwB and z′wB′ do not cross at T . This implies that the vertices

z, wB, z
′, wB′ appear in T in this order or in the order z, z′, wB′ , wB. Then it follows from the

construction of Q that z,QB(z, vB), wB, z
′, QB′(z′, vB′), wB′ appear in Q in this order or in the

order z,QB(z, vB), z
′, QB′(z′, vB′), wB′ , wB. Note that a1 ∈ V

(
QB(z, vB)

)
, b1 ∈ V

(
QB′(z′, vB′)

)
,

a2 = wB, and b2 = wB′ . Therefore, the vertices a1, a2, b1, b2 appear in Q in this order or in the

order a1, b1, b2, a2, respectively. In either case, the edges a1a2 and b1b2 do not cross at Q.

Therefore, the case z = z′ only remains. By the symmetry between a1a2 and b1b2, we may

assume that B = Bi and B′ = Bj for some p + 1 ≤ i < j ≤ q, where BR
z =

{
Bp+1, . . . , Bq

}
.

It follows from (2) that the vertices z, wBi
, wBj

appear in T in this order. This, together with

the construction of Q, implies that z,QBj
(z, vBj

), QBi
(z, vBi

), wBi
, wBj

appear in Q in this order.

Note that b1 ∈ V
(
QBj

(z, vBj
)
)
, a1 ∈ V

(
QBi

(z, vBi
)
)
, a2 = wBi

, and b2 = wBj
. Therefore, the

vertices b1, a1, a2, b2 appear in Q in this order, which implies that the edges a1a2 and b1b2 do not

cross at Q. This completes the proof of the case (i). □

Case (ii).

The proof of the case (ii) is similar to the proof of the case (i). By the symmetry between a1a2
and b1b2, we may also assume that b1 ̸= uB′ and b2 = wB′ for some B′ ∈ BL

z′ and some z′ ∈ V (T )

with B′ ̸= B.
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If z ̸= z′, then by the same way as in the proof of the case (i), we see that the edges a1a2 and

b1b2 do not cross at Q. Therefore, we may assume that z = z′. By the symmetry between a1a2 and

b1b2, we may assume that B = Bi and B′ = Bj for some 1 ≤ i < j ≤ p, where BL
z =

{
B1, . . . , Bp

}
.

It follows from (1) that the vertices z, wBj
, wBi

appear in T in this order. This, together with

the construction of Q, implies that z,QBi
(z, vBi

), QBj
(z, vBj

), wBj
, wBi

appear in Q in this order.

Note that a1 ∈ V
(
QBi

(z, vBi
)
)
, b1 ∈ V

(
QBj

(z, vBj
)
)
. a2 = wBi

, and b2 = wBj
. Therefore, the

vertices a1, b1, b2, a2 appear in Q in this order, which implies that the edges a1a2 and b1b2 do not

cross at Q. This completes the proof of the case (ii), and the proof of Claim 5. □

Now we partition all edges in H−{uv, vw,wu} into six sets E1, . . . , E6 such that no two edges

in Ei cross at Q for any i with 1 ≤ i ≤ 6 and they satisfy the conditions (Q3)–(Q5), which will

complete the proof of Lemma 11.

Let Ei =

{
Ei

1 ∪ Ei
0, for i = 1, 2, 3, 5,

Ei
1, for i = 4, 6.

Note that
{
E1

1 , . . . , E
6
1

}
are indeed a partition of E(G). We first check that this partition satisfies

the conditions (Q3)–(Q5).

Let e be an edge connecting u and V (H)−{u, v, w}. It follows from Claim 2 that e is contained

in T or placed on the right side of T . If e is an edge in T or a chord of T , then e ∈ E1
0 ; Otherwise,

e is contained in some non-trivial T -bridge B in BR
z for some z ∈ V (T ). It follows from Claim 3

(1) and the condition (Q3) for B that e ∈ E1
B and hence by the definition, we have e ∈ E1

1 . In

either case, we have e ∈ E1, and hence the condition (Q3) is satisfied.

Let e be an edge connecting v and V (H)−{u, v, w}. It follows from Claim 2 that e is contained

in T or placed on the right side of T . If e is an edge in T or a chord of T , then e ∈ E2
0 ; Otherwise,

e is contained in some non-trivial T -bridge B in BR
z for some z ∈ V (T ). It follows from Claim 3

(2) and the condition (Q5) for B that e ∈ E3
B, and hence by the definition, we have e ∈ E2

1 . In

either case, we have e ∈ E2, and hence the condition (Q4) is satisfied.

Let e be an edge connecting w and V (H)−{u, v, w}. It follows from Claim 2 that e is placed

on the left side of T . If e is a chord of T , then e ∈ E3
0 ; Otherwise, e is contained in some non-trivial

T -bridge B in BL
z for some z ∈ V (T ). It follows from Claim 3 (3) and the condition (Q5) for B

that e ∈ E3
B, and hence by the definition, we have e ∈ E3

1 . In either case, we have e ∈ E3, and

hence the condition (Q5) is satisfied.

Therefore, it suffices to prove that no two edges in Ei cross at Q for any 1 ≤ i ≤ 6. Let

i ∈ {1, 2, 3, 4, 5, 6} and let a1a2, b1b2 ∈ Ei. For i = 4 or 6, it follows from Claim 5 that the

edges a1a2 and b1b2 do not cross at Q. So, we may assume that i = 1, 2, 3 or 5. By Claim 5,

and the symmetry between a1a2 and b1b2, we may further assume that a1a2 ∈ Ei
1 and b1b2 ∈ Ei

0.

In particular, a1a2 is contained in some non-trivial T -bridge B in B. Since no vertices in T

appear in Q(uB, u
+
B), where u+

B is the successor of uB at T , we have b1, b2 ̸∈ V
(
Q(uB, u

+
B)
)
. So,

if {a1, a2} ∩ {vB, wB} = ∅, then a1, a2 ∈ {uB} ∪ V
(
QB(uB, vB)

)
⊆ V

(
Q[uB, u

+
B)
)
, and hence it

follows from Lemma 3 that a1a2 and b1b2 do not cross at Q. Therefore, by the symmetry between

a1 and a2, we may assume that a2 = vB or a2 = wB. Since i = 1, 2, 3, 5, it follows from the

conditions (Q3)–(Q5) for B and the definition of E1
1 , . . . , E

6
1 that a1 ̸= uB and exactly one of the

following holds;

(i) i = 2, a1a2 ∈ E3
B ⊆ E2

1 , a2 = wB and B ∈ BR
z for some z ∈ V (T ).
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(ii) i = 3, a1a2 ∈ E3
B ⊆ E3

1 , a2 = wB and B ∈ BL
z for some z ∈ V (T ).

Suppose first that the case (i) occurs. Then by the definition of E2
0 and the symmetry between

b1 and b2, we may assume that b2 = v. Note that both of the edges zwB and b1v are contained in T

or placed on the right side of T , and hence it follows from Lemma 2 that the edges zwB and b1v do

not cross at T . Therefore, the vertices z, wB, b1, v appear in T in this order (possibly, wB = b1) or

in the order b1, z, wB, v (possibly, b1 = z and/or wB = v). Thus, it follows from the construction

of Q that z,QB(z, vB), wB, b1, v appear in Q in this order or in the order b1, z, QB(z, vB), wB, v,

respectively. Since a1 ∈ V
(
QB(z, vB)

)
, a2 = wB and b2 = v, we see that the edges a1a2 and b1b2

do not cross at Q.

Suppose next that the case (ii) occurs. Then by the definition of E3
0 and the symmetry

between b1 and b2, we may assume that b2 = w. Note that both of the edges zwB and b1w are

contained in T or placed on the left side of T , and hence it follows from Lemma 2 that the edges

zwB and b1w do not cross at T . Therefore, the vertices z, wB, b1, w appear in T in this order

(possibly, wB = b1) or in the order b1, z, wB, w (possibly, b1 = z and/or wB = v). Thus, it follows

from the construction of Q that z,QB(z, vB), wB, b1, w appear in Q in this order or in the order

b1, z, QB(z, vB), wB, w, respectively. Since a1 ∈ V
(
QB(z, vB)

)
, a2 = wB and b2 = w, we see that

the edges a1a2 and b1b2 do not cross at Q.

This completes the proof of Lemma 11. □

6.2 Proof of Theorem 1 (iii)

Let G be a graph on the projective plane. To find a book embedding of G, we may assume that

G is a triangulation. By Lemma 9, G has a spanning disk triangulation H with outer cycle C

satisfying the conditions (G1)–(G5).

By the condition (G2), H has a path from s to t that passes through x and then y. Then it

follows from Theorem 5 that H has a C-Tutte path T from s to t that passes through x and then

y. By the symmetry, we may assume that the edges in C[s, x] are contained in T or placed on

the left side of T . Thus, the edges in
←−
C [y, t] are contained in T or placed on the right side of T .

Let EL (resp., ER) be the sets of edges e in E(H[V (T )])−E(T ) such that e is placed on the left

side (resp., the right side) of T . Note that E(H[V (T )]) = E(T ) ∪ EL ∪ ER.

Let B2 = {B : B is a non-trivial T -bridge of H having exactly two attachments},
and B3 = {B : B is a non-trivial T -bridge of H having exactly three attachments}.

Since T is a C-Tutte path in H and H is 2-connected, every non-trivial T -bridge of H belongs to

B2 or B3. Therefore, all vertices not contained in T are contained in B for some B ∈ B2 ∪ B3,

and any edge in H is either an edge connecting two vertices in T or contained in B for some

B ∈ B2 ∪B3. Thus,

E(H)− E
(
H[V (T )]

)
=

∪
B∈B2∪B3

E(B).

Now we appropriately insert QB(uB, vB) for all B ∈ B2∪B3 into T so that we obtain a suitable

sequence of V (G). To do that, we define the type of each B in B2 ∪B3, depending on which side
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(left or right) where it is placed on and the place of its attachments.

Let BL = {B ∈ B2 ∪B3 : B is placed on the left side of T},
and BR = {B ∈ B2 ∪B3 : B is placed on the right side of T}.

Furthermore, let

BL1 = {B ∈ BL : all the attachments of B are contained in T [s, x]},
BL2 = {B ∈ BL : B has at least two attachments on T [x, y]},
BL3 = {B ∈ BL : B has at least two attachments on T (y, t]},
BR1 = {B ∈ BR : all the attachments of B are contained in T [y, t]},
BR2 = {B ∈ BR : B has at least two attachments on T [x, y]},

and BR3 = {B ∈ BR : B has an attachment on T [s, x) and at most one attachment on T [x, y]}.

See Figure 11. Note that for any B ∈ B2, B contains an edge in C[s, x] if and only if B ∈ BL1,

B contains an edge in
←−
C [s, y] if and only if B ∈ BR3, and B contains an edge in

←−
C [y, t] if and

only if B ∈ BR1.

We claim that
{
BL1,BL2,BL3

}
is a partition of BL. To see that, let B ∈ BL. If all the

attachments of B are contained in T [s, x], then B ∈ BL1 and B ̸∈ BL2 ∪ BL3. Thus, we may

assume that B has an attachment on T (x, t]. So, B ̸∈ BL1. It follows from the planarity of H

that B has no attachments on T [s, x), and furthermore, B ̸∈ B2, and hence B ∈ B3. Suppose

that B has at least two attachments on T [x, y]. In this case, B ∈ BL2. Since B has at most three

attachments on T , B has at most one attachment on T (y, t], and hence B ̸∈ BL3. Thus, we may

further assume that B has at most one attachment on T [x, y]. In this case, B ̸∈ BL2. Since B

has exactly three attachments on T , this implies that B has at least two attachments on T (y, t],

and hence B ∈ BL3. Thus, the claim holds.

On the other hand, we also claim that
{
BR1,BR2,BR3

}
is a partition of BR. Let B ∈ BR. If

all the attachments of B are contained in T [y, t], then B ∈ BR1 and B ̸∈ BR2 ∪ BR3. Thus, we

may assume that B has an attachment on T [s, y). So, B ̸∈ BR1. Suppose that B has at least

two attachments on T [x, y]. In this case, clearly B ∈ BR2 and B ̸∈ BR3. Thus, we may further

assume that B has at most one attachment on T [x, y]. So, B ̸∈ BR2. Since B has at least two

attachments on T , this implies that B has at least one attachment on T [s, x), and hence B ∈ BR3.

Thus, the claim holds.

The claims above imply the following;

E(H)− E
(
H[V (T )]

)
=

∪
B∈BL1∪BL2∪BL3∪BR1∪BR2∪BR3

E(B). (3)

Let B ∈ B2, and let uB and vB be the two attachments of B on T such that s, uB, vB
appear in T in this order (possibly, s = uB). Since H is a disk triangulation, uBvB ∈ E(H) but

uBvB ̸∈ E(B), and B has to contain an edge in the outer cycle C. In particular, it follows from

the fact s, x, y, t ∈ V (T ) that B contains an edge in either C[s, x],
←−
C [s, y] or

←−
C [y, t]. (Note that

since xt ∈ E(C) and x, t ∈ V (T ), there exists no non-trivial T -bridge of H containing an edge in

C[x, t].) Furthermore, B ∩ C = C[uB, vB] if B ∈ BL1, and otherwise, B ∩ C =
←−
C [uB, vB]. Now

we construct the graph B+ that is obtained from B by adding the edge uBvB and a new vertex,

say wB, and joining wB to all vertices in B ∩ C. Note that those added vertex and edges can
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Figure 11: The C-Tutte path T in H and the T -bridges of H in BL1,BL2,BL3,BR1,BR2 and BR3.

be naturally embedded on the outer region of B so that the three vertices uB, vB and wB form

the outer cycle. So, indeed B+ is a plane triangulation with outer cycle uBvBwB. Notice also

that B ∩ C is contained in the outer cycle of B+ − wB. Then it follows from Lemma 11 that

B+−{uBvB, vBwB, wBuB} has a 6-page book embedding (Q+
B,E

+
B ), where E +

B = {E1+
B , . . . , E6+

B },
such that (Q1) uB is the first vertex in Q+

B, vB is the second last vertex, and wB is the last

vertex, (Q2) the vertices on B ∩C appear in Q+
B in this order, (Q3) all edges connecting uB and

V (B+) − {uB, vB, wB} belong to E1+
B , (Q4) all edges connecting vB and V (B+) − {uB, vB, wB}

belong to E2+
B , and (Q5) all edges connecting wB and V (B+)− {uB, vB, wB} belong to E3+

B . Let

QB be the sequence obtained from Q+
B by deleting the last vertex wB, and let EB = {E1

B, . . . , E
6
B},

where Ei
B = Ei+

B for 1 ≤ i ≤ 6 with i ̸= 3, and E3
B = E3+

B ∩E(B). Note that the pair (QB,EB) is

a 6-page book embedding of B.

On the other hand, let B ∈ B3. Then we define the three attachments uB, vB and wB of B on

T as follows:

• If B ∈ BL1 ∪ BR1, then let uB, vB and wB be the three attachments of B on T such that

s, uB, vB, wB and t appear in T in this order (possibly, s = uB or wB = t).
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• Suppose that B ∈ BL2. Note that B has at least two attachments on T [x, y]. If B has

exactly three attachments on T [x, y], then let uB, vB and wB be the three attachments of B

on T such that s, x, uB, vB, wB, y and t appear in T in this order (possibly, x = uB and/or

wB = y); Otherwise, B has exactly one attachment on T (y, t], say vB, and exactly two

attachments on T [x, y], say uB and wB, where s, x, uB, wB, y, vB and t appear in T in this

order (possibly, x = uB and/or wB = y and/or vB = t).

• Suppose that B ∈ BL3. Note that B has at least two attachments on T (y, t]. If B has exactly

three attachments on T (y, t], then let uB, vB and wB be the three attachments of B on T

such that s, x, y, uB, vB, wB and t appear in T in this order (possibly, wB = t); Otherwise,

B has exactly one attachment on T [x, y], say vB, and B has exactly two attachments on

T (y, t], say uB and wB, where s, x, vB, y, uB, wB and t appear in T in this order (possibly,

x = vB or vB = y and/or wB = t).

• Suppose that B ∈ BR2. Note that B has at least two attachments on T [x, y]. If B has

exactly three attachments on T [x, y], then let uB, vB and wB be the three attachments of B

on T such that s, x, uB, vB, wB, y and t appear in T in this order (possibly x = uB and/or

wB = y); Otherwise, B has exactly one attachment on T [s, x), say vB, and B has exactly

two attachments on T [x, y], say uB and wB, where s, vB, x, uB, wB, y and t appear in T in

this order (possibly, s = vB and/or x = uB and/or wB = y).

• Suppose that B ∈ BR3. Since B has exactly three attachments on T , B has at least two

attachments on T [s, x) and at most one attachment on T [x, y]. If B has exactly three

attachments on T [s, x), then let uB, vB and wB be the three attachments of B on T such

that s, uB, vB, wB, x, y and t appear in T in this order (possibly s = uB); Otherwise, B has

exactly two attachments on T [s, x), say uB and wB, and B has exactly one attachment on

T [x, y], say vB, where s, uB, wB, x, vB, y and t appear in T in this order (possibly, s = uB

and/or x = vB or vB = y).

Then see Table 1 for the places of the vertices uB, vB and wB, depending on the types of

B. Note that since H is a disk triangulation, we see that uBvB, vBwB, wBuB ∈ E(H) but

uBvB, vBwB, wBuB ̸∈ E(B).

Table 1: The possible places of the vertices uB, vB and wB, depending on the types of B.

B ∈ BL1 B ∈ BL2 B ∈ BL3 B ∈ BR1 B ∈ BR2 B ∈ BR3

uB, wB T [s, x] T [x, y] T (y, t] T [y, t] T [x, y] T [s, x)

vB T [s, x] T [x, y] ∪ T (y, t] T [x, y] ∪ T (y, t] T [y, t] T [s, x) ∪ T [x, y] T [s, x) ∪ T [x, y]

Note that B + {uBvB, vBwB, wBuB} is a plane triangulation. Then it follows from Lemma

11 that B has a 6-page book embedding (QB,EB), where EB = {E1
B, . . . , E

6
B} such that (Q1)

uB is the first vertex in QB, vB is the second last vertex, and wB is the last vertex, (Q3) all

edges connecting uB and V (B) − {uB, vB, wB} belong to E1
B, (Q4) all edges connecting vB and

V (B)− {uB, vB, wB} belong to E2
B, and (Q5) all edges connecting wB and V (B)− {uB, vB, wB}

belong to E3
B. (Since we do not use the condition (Q2) for B ∈ B3, we can ignore it.)
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For each z ∈ V (T ), define BL
z (resp., BR

z ) as the set of T -bridges B in B2 ∪ B3 such that

uB = z and B is placed on the left (resp., right) side of T . Let B1, . . . , Bp be the elements in BL
z

along the clockwise order around z, where p = |BL
z |. Similarly, let Bp+1, . . . , Bq be the elements

in BR
z along the clockwise order around z, where q = p+ |BR

z |. Then we have the following claim.

Claim 6 Let z ∈ V (T ), let BL
z = {B1, . . . , Bp}, and let BR

z = {Bp+1, . . . , Bq} as above. Then

both of the following hold.

(I) The vertices z, vB1 , wB1 , vB2 , . . . , vBp , wBp , t appear in T in one of the following orders5:

(I-1) z, vBp , wBp , vBp−1 , . . . , wB2 , vB1 , (wB1 , ) t.

(I-2) z, vBp , wBp , vBp−1 , . . . , wB2 , wB1 , y, vB1 , t.

(I-3) vB1 , z, vBp , wBp , vBp−1 , . . . , wB2 , wB1 , t.

(II) The vertices z, vBp+1 , wBp+1 , vBp+2 , . . . , vBq , wBq , t appear appear in T in one of the following

orders6:

(II-1) z, vBp+1 , wBp+1 , vBp+2 , . . . , vBq , (wBq , ) t

(II-2) vBq , x, z, vBp+1 , wBp+1 , vBp+2 , . . . , wBq−1 , wBq , t.

(II-3) z, vBp+1 , wBp+1 , vBp+2 , . . . , wq−1, wBq , x, vBq , t.

Proof. We prove (I) and (II) at the same time. Suppose first that z ∈ V
(
T [s, x)

)
. Then all

non-trivial T -bridges B in BL
z belong to BL1, and all non-trivial T -bridges B in BR

z belong to

BR3. (See Table 1.) It follows from the planarity that if z = uB for some B ∈ B2, then B = B1

in the case when B ∈ BL
z , and B = Bq in the case when B ∈ BR

z . Then the choice of uB, vB, wB

implies that the vertices z, vB1 , (wB1 , ) vB2 , . . . , vBp , wBp , t appear in T in the order as in (I-1). On

the other hand, it follows from the planarity that if z = uB for some B ∈ BR3 such that B has

an attachment on T (x, y], then B = Bq and vB ∈ V
(
T (x, y]

)
. Therefore, the choice of uB, vB, wB

implies that the vertices z, vBp+1 , wBp+1 , vBp+2 , . . . , vBq , (wBq , ) t appear in T in the order as in

(II-1) if Bq has no attachment on T (x, y]; Otherwise as in (II-3).

Suppose next that z ∈ V
(
T [x, y)

)
. Then all non-trivial T -bridges B in BL

z belong to BL2,

and all non-trivial T -bridges B in BR
z belong to BR2. Note that no T -bridge B in B2 satisfies

z = uB. It follows from the planarity that if z = uB for some B ∈ BL2 such that B has an

attachment on T (y, t], then B = B1 and vB ∈ V
(
T (y, t]

)
. Then the choice of uB, vB, wB implies

that the vertices z, vB1 , wB1 , vB2 , . . . , vBp , wBp , t appear in T in the order as in (I-1) if B1 has no

attachment on T (y, t]; Otherwise as in (I-2). Similarly, if z = uB for some B ∈ BR2 such that B

has an attachment on T [s, x), then B = Bq, and the vertices z, vBp+1 , wBp+1 , vBp+2 , . . . , vBq , wBq , t

appear in T in the order as in (II-1) or (II-2).

Suppose finally that z ∈ V
(
T [y, t)

)
. Then all non-trivial T -bridges B in BL

z belong to BL3,

and all non-trivial T -bridges B in BR
z belong to BR1. If z = uB for some B ∈ BL3 such that B

has an attachment on T [x, y], then B = B1 and vB ∈ V
(
T [x, y]

)
. Thus, the choice of uB, vB, wB

5Possibly, wBp = vBp−1 and/or · · · , and/or wB1 = t. In (I-1), wB1 does not exist when z ∈ V
(
T [s, x)

)
and

B1 ∈ B2. Furthermore, (I-2) (resp., (I-3)) occurs only when z ∈ V
(
T [x, y)

)
(resp., only when z ∈ V

(
T [y, t)

)
).

6Possibly, wBp+1 = vBp+2 and/or · · · , and/or wBq = t. In the first case, wBq does not exist when z ∈
V
(
T [s, x)

)
∪ V

(
T [y, t)

)
and Bq ∈ B2. Furthermore, (II-2) (resp., (II-3)) occurs only when z ∈ V

(
T [x, y)

)
(resp.,

only when z ∈ V
(
T [s, x)

)
).
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implies that the vertices z, vB1 , wB1 , vB2 , . . . , vBp , wBp , t appear in T in the order as in (I-1) or

(I-3). On the other hand, it follows from the planarity that if z = uB for some B ∈ B2, then

B = Bq and B ∈ BR
z . Then the vertices z, vBp+1 , wBp+1 , vBp+2 , . . . , vBq , (wBq , ) t appear in T in

the order as in (II-1).

This completes the proof of Claim 6. □

Now, we insert the sequenceQB1(z, vB1)QB2(z, vB2) · · · QBp(z, vBp)QBq(z, vBq)QBq−1(z, vBq−1)

· · · QBp+1(z, vBp+1) just after z in T . Therefore, we obtain the new sequence

T [s, z] QB1(z, vB1) · · · QBp(z, vBp) QBq(z, vBq) · · · QBp+1(z, vBp+1) T (z, t].

We do the above insertion for all z ∈ V (T ) independently, and let Q be the obtained sequence of

the vertices in G. It follows from the construction of Q and the condition (Q2) for each B ∈ B2

that the following claim holds.

Claim 7 The vertices in C[s, x]
←−
C [y, t] appear in Q in this order.

Now we will partition all edges in G into the six sets so that no two edges in a same set cross

at Q. To do that, we first partite all edges in
∪

B∈B2∪B3
B into six sets E1

1 , . . . , E
6
1 .

Let E1
1 =

∪
B∈BL1∪BL2

E1
B ∪

∪
B∈BL3

E1
B ∪

∪
B∈BR1

E4
B ∪

∪
B∈BR2∪BR3

E4
B,

E2
1 =

∪
B∈BL1∪BL2

E2
B ∪

∪
B∈BL3

E2
B ∪

∪
B∈BR1

E6
B ∪

∪
B∈BR2∪BR3

E6
B,

E3
1 =

∪
B∈BL1∪BL2

E3
B ∪

∪
B∈BL3

E5
B ∪

∪
B∈BR1

E3
B ∪

∪
B∈BR2∪BR3

E5
B,

E4
1 =

∪
B∈BL1∪BL2

E4
B ∪

∪
B∈BL3

E4
B ∪

∪
B∈BR1

E1
B ∪

∪
B∈BR2∪BR3

E1
B,

E5
1 =

∪
B∈BL1∪BL2

E5
B ∪

∪
B∈BL3

E3
B ∪

∪
B∈BR1

E5
B ∪

∪
B∈BR2∪BR3

E2
B,

and E6
1 =

∪
B∈BL1∪BL2

E6
B ∪

∪
B∈BL3

E6
B ∪

∪
B∈BR1

E2
B ∪

∪
B∈BR2∪BR3

E3
B.

Since EB = {E1
B, . . . , E

6
B} is a partition of E(B) for any B ∈ B2∪B3, we see that {E1

1 , . . . , E
6
1}

is a partition of
∪

B∈B2∪B3
E(B) = E(H)−E

(
H[V (T )]

)
. (See (3).) For those sets E1

1 , . . . , E
6
1 , we

show the following claim.

Claim 8 For any integer i with 1 ≤ i ≤ 6, any two edges in Ei
1 do not cross at Q.

Proof. Let i ∈ {1, 2, 3, 4, 5, 6} and let a1a2 and b1b2 be two edges in Ei
1. By the definition

of Ei
1, the edge a1a2 is contained in some non-trivial T -bridge B in B2 ∪ B3. If b1b2 ∈ E(B),

then since the pair (QB,EB) is a 6-page book embedding of B and a1a2, b1b2 ∈ Ej
B ∈ EB for

some 1 ≤ j ≤ 6, we see that a1a2 and b1b2 do not cross at QB, and hence at Q. Thus, we

may assume that b1b2 ̸∈ E(B), which implies that b1b2 ∈ E(B′) for some B′ ∈ B2 ∪ B3 with

B′ ̸= B. In particular, since the vertices in QB(uB, vB) appear in Q consecutively, we have

b1, b2 ∈ V (Q)− V
(
QB(uB, vB)

)
. So, if {a1, a2} ∩ {uB, vB, wB} = ∅, then a1, a2 ∈ V

(
QB(uB, vB)

)
,

and hence it follows from Lemma 3 that a1a2 and b1b2 do not cross at Q. Therefore, we may
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assume that {a1, a2} ∩ {uB, vB, wB} ̸= ∅. By the symmetry between a1a2 and b1b2, we may also

assume that {b1, b2} ∩ {uB′ , vB′ , wB′} ̸= ∅.

Case 1. a1 = uB or a2 = uB or b1 = uB′ or b2 = uB′ .

Say a1 = uB by symmetry. It follows from the condition (Q3) for B that a1a2 ∈ E1
B, and it

follows from the definitions of E1
1 , . . . , E

6
1 that a1a2 ∈ E1

1 ∪E4
1 . So, i = 1 or 4, and b1b2 ∈ E1

1 ∪E4
1 .

Since {b1, b2} ∩ {uB′ , vB′ , wB′} ̸= ∅, it follows from the conditions (Q3)–(Q5) that b1 = uB′ or

b2 = uB′ , say b1 = uB′ by symmetry. If uB = uB′ , then the edges a1a2 and b1b2 share uB as the

end vertex, and hence they do not cross. Thus, we may assume that uB ̸= uB′ . Then it follows

from the construction of Q that b1, b2 ̸∈ V
(
Q[uB, u

+
B)
)
, where u+

B is the successor of uB at T .

Since a1, a2 ∈ V
(
Q[uB, u

+
B)
)
, it follows from Lemma 3 that a1a2 and b1b2 do not cross at Q. This

completes the proof of Case 1.

Case 2. a1, a2 ̸= uB and b1, b2 ̸= uB′ .

Since {a1, a2} ∩ {uB, vB, wB} ̸= ∅, it follows from the symmetry between a1 and a2 that we

may assume that a2 = vB or a2 = wB. By the symmetry between a1a2 and b1b2, we may also

assume that b2 = vB′ or b2 = wB′ . It follows from the conditions (Q4) and (Q5) for B and

B′ that a1a2 ∈ E2
B ∪ E3

B and b1b2 ∈ E2
B′ ∪ E3

B′ . In particular, we see that i ̸= 1, 4. Note that

a1 ∈ V
(
QB(uB, vB)

)
and b1 ∈ V

(
QB′(uB′ , vB′)

)
.

We claim that B and B′ are placed on the same side of T . For the contrary, suppose that

B and B′ are placed on the different side of T , which means either B ∈ BL and B′ ∈ BR, or

B ∈ BR and B′ ∈ BL. By the symmetry between B and B′, we may assume the former occurs.

Since a1a2 ∈ E2
B ∪E3

B and b1b2 ∈ E2
B′ ∪E3

B′ , it follows from the definition of E1
1 , . . . , E

6
1 that one

of the following hold.

(i) i = 3, B ∈ BL1, a1a2 ∈ E3
B, a2 = wB, B

′ ∈ BR1, b1b2 ∈ E3
B′ , and b2 = wB′ .

(ii) i = 3, B ∈ BL2, a1a2 ∈ E3
B, a2 = wB, B

′ ∈ BR1, b1b2 ∈ E3
B′ , and b2 = wB′ .

(iii) i = 5, B ∈ BL3, a1a2 ∈ E3
B, a2 = wB, B

′ ∈ BR2 ∪BR3, b1b2 ∈ E2
B′ , and b2 = vB′ .

Suppose that the case (i) occurs. Then all the attachments of B are contained in T [s, x].

and all the attachments of B′ are contained in T [y, t]. It follows from the construction of Q that

a1, a2 ∈ V
(
Q[s, x]

)
and b1, b2 ∈ V

(
Q[y, t]

)
, which imply that a1a2 and b1b2 do not cross at Q.

Suppose next that the case (ii) occurs. Since B ∈ BL2, we have uB, wB ∈ V
(
T [x, y]

)
. (See

Table 1.) Therefore, it follows from the construction of Q that all vertices in QB[uB, vB) ∪ {wB}
appear in Q[x, y]. Since a1a2 ∈ E3

B, it follows from the condition (Q4) for B that a1, a2 ̸= vB,

and hence a1, a2 ∈ V
(
QB[uB, vB)

)
∪ {wB}. Therefore, we have a1, a2 ∈ V

(
Q[x, y]

)
. On the other

hand, since B′ ∈ BR1, it is easy to see that b1, b2 ∈ V
(
Q[y, t]

)
. These imply that a1a2 and b1b2

do not cross at Q.

Suppose finally that the case (iii) occurs. Since B ∈ BL3, we have uB, wB ∈ V
(
T [y, t]

)
. (See

Table 1.) Therefore, it follows from the construction of Q that all vertices in QB[uB, vB) ∪ {wB}
appear in Q[y, t]. Since a1a2 ∈ E3

B, it follows from the condition (Q4) for B that a1, a2 ̸= vB,

and hence a1, a2 ∈ V
(
QB[uB, vB)

)
∪ {wB}. Therefore, we have a1, a2 ∈ V

(
Q[y, t]

)
. On the other

hand, since B′ ∈ BR2 ∪BR3, it is easy to see that b1, b2 ∈ V
(
Q[s, y]

)
. These imply that a1a2 and

b1b2 do not cross at Q, and hence the claim holds.
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Therefore, we may assume that B and B′ are placed on the same side of T , that is, either

B,B′ ∈ BL or B,B′ ∈ BR. Suppose that uB ̸= uB′ . Since the edges uBa2 and uB′b2 are placed

on the same side of T (both on the left side or the right side), it follows from Lemma 2 that uBa2
and uB′b2 do not cross at T . Recall that a1 ∈ V

(
QB(uB, vB)

)
and hence a1 ∈ V

(
Q(uB, u

+
B)
)
,

where u+
B is the successor of uB at T . Similarly, b1 ∈ V

(
Q(uB′ , u+

B′)
)
, where u+

B′ is the successor of

uB′ at T . Furthermore, we have a2, b1, b2 ̸∈ V
(
Q(uB, u

+
B)
)
and a1, a2, b2 ̸∈ V

(
Q(uB′ , u+

B′)
)
. These

imply that the edges a1a2 and b1b2 do not cross at Q, neither.

Thus, the case uB = uB′ only remains. Suppose that B,B′ ∈ BL. By the symmetry be-

tween a1a2 and b1b2, we may assume that B = Bi and B′ = Bj with 1 ≤ i < j ≤ p, where

BL
z =

{
B1, . . . , Bp

}
. It follows from Claim 6 (I) that the vertices z, a2, b2 appear in T in the

order z, b2, a2 unless the case (I-3) occurs and vB1 = a2. Note that in the exceptional case,

they appear in T in the order a2, z, b2. This, together with the construction of Q, implies that

z,QBi
(z, vBi

), QBj
(z, vBj

), b2, a2 appear inQ in this order, or in the order a2, z, QBi
(z, vBi

), QBj
(z, vBj

), b2.

Note that a1 ∈ V
(
QBi

(z, vBi
)
)
and b1 ∈ V

(
QBj

(z, vBj
)
)
. Therefore, the edges a1a2 and b1b2 do

not cross at Q.

Suppose next that B,B′ ∈ BR. By the symmetry between a1a2 and b1b2, we may assume that

B = Bi and B′ = Bj with p+1 ≤ i < j ≤ q, where BR
z =

{
Bp+1, . . . , Bq

}
. It follows from Claim 6

(II) that the vertices z, a2, b2 appear in T in this order, unless the case (II-2) occurs and vBq = b2.

Note that in the exceptional case, they appear in T in the order b2, z, a2. This, together with the

construction of Q, implies that z,QBj
(z, vBj

), QBi
(z, vBi

), a2, b2 appear in Q in this order or in the

order b2, z, QBj
(z, vBj

), QBi
(z, vBi

), a2. Note that b1 ∈ V
(
QBj

(z, vBj
)
)
and a1 ∈ V

(
QBi

(z, vBi
)
)
.

Therefore, the edges a1a2 and b1b2 do not cross at Q.

This completes the proof of Claim 8. □

Now we partition all edges in G into six sets E1, . . . , E6 as follows;

Let E1 = E1
1 ∪ E(T ) ∪ EL,

E2 = E2
1 ,

E3 = E3
1 ∪

(
E(G)− E(H)− Ex

)
,

E4 = E4
1 ∪ ER,

E5 = E5
1 ,

and E6 = E6
1 ∪ Ex.

Recall that E(H[V (T )]) = E(T )∪EL∪ER. Then it follows from the definition of E1
1 , . . . , E

6
1 and

equality (3) that {E1, . . . , E6} is indeed a partition of E(G). We will show that no two edges in Ei

cross at Q for any 1 ≤ i ≤ 6, which will complete the proof of Theorem 1 (iii). Let a1a2, b1b2 ∈ Ei.

For i = 2 or 5, it follows from Claim 8 that the edges a1a2 and b1b2 do not cross at Q. So, we

may assume that i = 1, 3, 4 or 6. Recall that all edges in Ex share x as an end vertex. Thus,

by the condition (G3), Lemma 2, Claims 7 and 8, and the symmetry between a1a2 and b1b2, we

may further assume that a1a2 ∈ Ei
1 and b1b2 ∈ Ei − Ei

1. In particular, a1a2 is contained in some

T -bridge B in B2 ∪B3.

Case 1. i = 1.

In this case, a1a2 ∈ E1
1 and b1b2 ∈ E(T ) ∪ EL. It follows from the definition of E1

1 that

a1a2 ∈ E1
B ∪ E4

B. By the conditions (Q3)–(Q5) for B, we see that a1, a2 ∈ V
(
QB[uB, vB)

)
. Note

31



that QB[uB, vB) is contained in Q[uB, u
+
B), where u+

B is the successor of uB at T , and hence

a1, a2 ∈ V
(
Q[uB, u

+
B)
)
. On the other hand, since b1, b2 ∈ V (T ), it follows from the construction

of Q that b1, b2 ̸∈ V
(
Q(uB, u

+
B)
)
. Then it follows from Lemma 3 that a1a2 and b1b2 do not cross

at Q, and complete the proof of Case 1.

Case 2. i = 3.

In this case, a1a2 ∈ E3
1 and b1b2 ∈ E(G)−E(H)−Ex. It follows from the condition (G3) and

the symmetry between b1 and b2 that we may assume that b1 ∈ V
(
C[s, x]

)
and b2 ∈ V

(←−
C [y, t]

)
.

Case 2.1. B ∈ BL1 ∪BR1.

By the definition of E3
1 , we have a1a2 ∈ E3

B. Then, it follows from the conditions (Q3) and

(Q4) that {a1, a2} ∩ {uB, vB} = ∅. Now we only prove the case where B ∈ BL1, but the case

where B ∈ BR1 can be shown by the same way. (In fact, exchanging the role of b1 and b2 and the

role of C[s, x] and
←−
C [y, t], we obtain a proof of the case where B ∈ BR1.)

Let u and v be two vertices in T [s, x] ∩ C[s, x] such that uB is contained in T [u, v). (Note

that s and x satisfy the conditions of u and v, respectively, and hence those vertices indeed

exist.) Taking such vertices u and v so that C[u, v) is as short as possible, we may assume

that no vertices in C[s, x] are contained in T (u, v). By this choice and the planarity, we see

that u, uB, vB, (wB, ) v, x appear in T in this order (possibly, wB does not exist, and/or u = uB,

and/or wB = v, and/or v = x). If b1 ̸∈ V
(
C(u, v)

)
, then we have a1, a2 ∈ V

(
Q[u, v]

)
and

b1, b2 /∈ V
(
Q(u, v)

)
. Then it follows from Lemma 3 that the edges a1a2 and b1b2 do not cross at

Q. Thus, we may assume that b1 ∈ V
(
C(u, v)

)
, and hence there exists a non-trivial T -bridge B′

in B2 ∩BL
u with b1 ∈ V (B′)− {uB′ , vB′}. It follows from the construction of Q that B′ = B1 and

Q[u, b1] = QB′ [u, b1],

where BL
u = {B1, . . . , Bp}. In particular, all vertices in B′ appear in Q[u, u+), where u+ is the

successor of u at T . So, if u ̸= uB, then we have a1, a2 ∈ V
(
Q[u+, v]

)
and b1, b2 /∈ V

(
Q(u+, v)

)
.

Then again, it follows from Lemma 3 that the edges a1a2 and b1b2 do not cross at Q.

Therefore, we may assume that u = uB, and hence B ∈ BL
u . Let B = Bj for some j with

1 ≤ j ≤ p. If j ̸= 1, then a1, a2 ̸∈ V
(
Q[u, b1]

)
, and hence it follows from Lemma 3 that the

edges a1a2 and b1b2 do not cross at Q. Therefore, we may assume that j = 1, which means that

a1, a2, b1 ∈ V (B). Recall that a1a2 ∈ E3
B. Then it follows from the conditions (Q3) and (Q4)

that a1, a2, b1 ̸= uB, vB, {a1, a2, b1} ∩ {uB, vB} ≠ ∅, and hence a1, a2, b1 ∈ V
(
QB(uB, vB)

)
. Since

(Q+
B,E

+
B ) is a 6-page book embedding of B+, we see that the edges a1a2 and b1wB do not cross

at Q+
B. Therefore, it follows from the symmetry between a1 and a2 that a1, a2, b1, wB appear in

Q+
B in this order or in the order b1, a1, a2, wB. Since QB(u, vB) is a subsequence of Q, we see that

a1, a2, b1, b2 appear in Q in this order or in the order b1, a1, a2, b2, respectively. Therefore, the

edges a1a2 and b1b2 do not cross at Q, and this completes the proof of Case 2.1. □

Case 2.2. B ∈ BL2 ∪BL3 ∪BR2 ∪BR3.

In this case, we see that B − {uB, vB, wB} contains neither b1 nor b2. This implies that

b1, b2 ̸∈ V
(
QB(uB, vB)

)
. So, if {a1, a2} ∩ {uB, vB, wB} = ∅, then a1, a2 ∈ V

(
QB(uB, vB)

)
, and

hence it follows from Lemma 3 that the edges a1a2 and b1b2 do not cross at Q. (Recall that

the vertices in QB(uB, vB) are contained in Q consecutively.) Therefore, we may assume that

{a1, a2}∩{uB, vB, wB} ̸= ∅. By the symmetry between a1 and a2, we may also assume that a2 = uB
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or a2 = vB or a2 = wB. It follows from the conditions (Q3)–(Q5) that a1a2 ∈ E1
B ∪ E2

B ∪ E3
B.

Thus, by the definition of E3
1 , we see that B ∈ BL2, a1a2 ∈ E3

B, and a2 = wB. By the definition

of uB and wB for B ∈ BL2, we have uB, wB ∈ V
(
T [x, y]

)
. (See Table 1.) Since b1 ∈ V

(
C[s, x]

)
and b2 ∈ V

(←−
C [y, t]

)
, it follows from Claim 7 that b1, uB, wB, b2 appear in Q in this order. Then it

follows from the construction of Q that b1, uB, QB(uB, vB), wB, b2 appear in Q in this order. Since

a1 ∈ V
(
QB(uB, vB)

)
and a2 = wB, we see that the edges a1a2 and b1b2 do not cross at Q. This

completes the proof of Case 2. □

Case 3. i = 4.

We can show this case by the same way as Case 1. In fact, we have a1a2 ∈ E4
1 and b1b2 ∈ ER.

It follows from the definition of E4
1 that a1a2 ∈ E1

B ∪E4
B. By the conditions (Q3)–(Q5) for B, we

see that a1, a2 ∈ V
(
QB[uB, vB)

)
. Note that QB[uB, vB) is contained in Q[uB, u

+
B), where u

+
B is the

successor of uB at T , and hence a1, a2 ∈ V
(
Q[uB, u

+
B)
)
. On the other hand, since b1, b2 ∈ V (T ),

it follows from the construction of Q that b1, b2 ̸∈ V
(
Q(uB, u

+
B)
)
. Then it follows from Lemma 3

that a1a2 and b1b2 do not cross at Q, and this completes the proof of Case 3. □

Case 4. i = 6.

In this case, a1a2 ∈ E6
1 and b1b2 ∈ Ex. It follows from the condition (G3) and the symmetry

between b1 and b2 that we may assume that b1 ∈ V
(←−
C [s, y)

)
and b2 = x. Note that the vertices

s, b1, x and y appear in Q in this order.

Case 4.1. B ∈ BL1 ∪BL2 ∪BL3 ∪BR1 ∪BR2.

In this case, we see that B − {uB, vB, wB} contains neither b1 nor b2. This implies that

b1, b2 ̸∈ V
(
QB(uB, vB)

)
. So, if {a1, a2} ∩ {uB, vB, wB} = ∅, then a1, a2 ∈ V

(
QB(uB, vB)

)
, and

hence it follows from Lemma 3 that the edges a1a2 and b1b2 do not cross at Q. (Recall that

the vertices in QB(uB, vB) are contained in Q consecutively.) Therefore, we may assume that

{a1, a2}∩{uB, vB, wB} ̸= ∅. By the symmetry between a1 and a2, we may also assume that a2 = uB

or a2 = vB or a2 = wB. It follows from the conditions (Q3)–(Q5) that a1a2 ∈ E1
B ∪E2

B ∪E3
B. By

the definition of E6
1 , we see that either (I) B ∈ BR1, a1a2 ∈ E2

B, and a2 = vB, or (II) B ∈ BR2,

a1a2 ∈ E3
B, and a2 = wB.

Suppose first that the case (I) occurs. Then by the definition of uB and vB for B ∈ BR1, we

have uB, vB ∈ V
(
T [y, t]

)
. (See Table 1.) Since b1 ∈ V

(←−
C [s, y)

)
and b2 = x, it follows from the

planarity that b1, b2, uB, vB appear in Q in this order. Then it follows from the construction of Q

that b1, b2, uB, QB(uB, vB), vB appear in Q in this order. Since a1 ∈ V
(
QB(uB, vB)

)
and a2 = vB,

the edges a1a2 and b1b2 do not cross at Q.

Suppose next that the case (II) occurs. Then by the definition of uB and wB for B ∈ BR2, we

have uB, wB ∈ V
(
T [x, y]

)
. (See Table 1.) Since b1 ∈ V

(←−
C [s, y)

)
and b2 = x, it follows from the

planarity that b1, b2, uB and wB appear in Q in this order (possibly b2 = x = uB). Then it follows

from the construction of Q that b1, b2, uB, QB(uB, vB) and wB appear in Q in this order. Since

a1 ∈ V
(
QB(uB, vB)

)
, we see that the edges a1a2 and b1b2 do not cross at Q. This completes the

proof of Case 4.1. □

Case 4.2. B ∈ BR3.

By the definition of E6
1 , we have a1a2 ∈ E3

B. Then, it follows from the conditions (Q3) and

(Q4) that {a1, a2} ∩ {uB, vB} = ∅. Therefore, a1, a2 ∈ V
(
T [s, x)

)
. (See Table 1.)
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Let u and v be two vertices in T [s, y] ∩
←−
C [s, y] such that uB is contained in T [u, v). (Note

that s and y satisfy the conditions of u and v, respectively, and hence those vertices indeed

exist.) Taking such vertices u and v so that
←−
C [u, v) is as short as possible, we may assume

that no vertices in
←−
C [s, y] are contained in T (u, v). By this choice and the planarity, we see

that u, uB, (wB, ) x appear in T in this order (possibly, wB does not exist, and/or u = uB,

and/or v = x). If b1 ̸∈ V
(←−
C (u, v)

)
, then we have a1, a2 ∈ V

(
Q[u, v]

)
and b1, b2 /∈ V

(
Q(u, v)

)
.

Then it follows from Lemma 3 that the edges a1a2 and b1b2 do not cross at Q. Thus, we may

assume that b1 ∈ V
(
C(u, v)

)
, and hence there exists a non-trivial T -bridge B′ in B2 ∩ BR

u with

b1 ∈ V (B′)− {uB′ , vB′}. It follows from the construction of Q that B′ = Bq and

Q[u, b1] = QB1 [u, vB1) QB2(u, vB2) . . . QBp(u, vBp) QBq(u, b1],

where BL
u = {B1, . . . , Bp} and BR

u = {Bp+1, . . . , Bq}. In particular, all vertices in B′ appear in

Q[u, u+), where u+ is the successor of u at T . So, if u ̸= uB, then we have a1, a2 ∈ V
(
Q[u+, v]

)
and b1, b2 /∈ V

(
Q(u+, v)

)
. Then it follows from Lemma 3 that the edges a1a2 and b1b2 do not

cross at Q.

Therefore, we may assume that u = uB. Let B = Bj for some j with p + 1 ≤ j ≤ q. If

j ̸= q, then we see that a1, a2 ̸∈ V
(
Q[u, b1]

)
, and hence the edges a1a2 and b1b2 do not cross

at Q. Therefore, we may assume that j = q, which means that a1, a2, b1 ∈ V (B). Recall that

a1a2 ∈ E3
B. Then it follows from the conditions (Q3) and (Q4) that a1, a2, b1 ̸= uB, vB, and hence

a1, a2, b1 ∈ V
(
QB(uB, vB)

)
. Since (Q+

B,E
+
B ) is a 6-page book embedding of B+, we see that the

edges a1a2 and b1wB do not cross at Q+
B. Therefore, it follows from the symmetry between a1 and

a2 that a1, a2, b1, wB appear in Q+
B in this order or in the order b1, a1, a2, wB. Since QB(u, vB) is

a subsequence of Q, we see that the edges a1a2 and b1b2 do not cross at Q, This completes the

proof of Case 4.2, and the proof of Theorem 1 (iii). □

Acknowledgements

The first author’s work was partially supported by JSPS KAKENHI Grant Number 15K04975.

The third author’s work was partially supported by JSPS KAKENHI Grant Number 25871053,

and by Grant for Basic Science Research Projects from The Sumitomo Foundation.

References

[1] J. Balogh and G. Salazar, Book embeddings of regular graphs, SIAM J. Discrete Math 29

(2015), 811–822.

[2] F. Bernhart and P.C. Kainen, The book thickness of a graph, J. Combin. Theory Ser. B 27

(1979), 320–331.

[3] J.F. Buss and P.W. Shor, On the pagenumber of planar graphs, Proc. the 16th Annual ACM

Symp. Theory of Computing (STOC), (1984), 98–100.

[4] F.R.K. Chung, F.T. Leighton and A.L. Rosenberg, Embedding graphs in books: A layout

problem with applications to VLSI design, SIAM J. Algebraic Discrete Methods 8 (1987),

33–58.

34
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