Book embedding of graphs on the projective plane
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Abstract

For a positive integer k, a book (with k pages) is a topological space consisting of a spine,
which is a line, and k pages, which are half-planes with the spine as its boundary. We say
that a graph G admits a k-page book embedding or is k-page book embeddable if there exists
a linear ordering of the vertices on the spine and one can assign the edges of G to k pages
such that no two edges of the same page cross. Yannakakis proved that every plane graph
admits a 4-page book embedding, and using it, Nakamoto and Nozawa showed that every
graph on the projective plane admits a 9-page book embedding. In this paper, we improve
the latter result to 6-page embedding. Furthermore, we also prove that every graph on the
projective plane admits a 3-page book embedding if it is 5-connected, and a 5-page book
embedding if it is 4-connected. Our idea of the proofs is to use a “Tutte path”, which is very
different from previous ones.
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1 Introduction

For a positive integer k, a book (with k pages) is a topological space consisting of a spine, which
is a line, and k pages, which are half-planes with the spine as its boundary. We say that a graph
G admits a k-page book embedding or is k-page book embeddable if there exists a linear ordering
of the vertices on the spine and one can assign the edges to k pages such that no two edges of
the same page cross. Recall that two edges ajay and bi1by cross at a sequence () of vertices if
the vertices ay, as, by and by are all distinct and they appear on () in the order a;, b, as_;, bs—; or
bj,a;,bs_;,as_; for some 7, j € {1,2}. The pagenumber (or sometimes called the stack number or
the book thickness) of a graph G is the minimum of &k such that G is k-page book embeddable.

This notion was first introduced by Bernhart and Kainen [2]. Since a book embedding is much
concerned with theoretical computer science, such as VLSI design [4, 16], we are interested in
bounding the pagenumber. Actually, a number of researchers have established upper bounds of
the pagenumber for some graph classes, for example, complete bipartite graphs [8, 14], regular
graphs [3, 4], and k-trees [5, 9, 23]. Several algorithms to find an embedding of a given graph into
a book with a few pages were also presented [12, 19].
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On the other hand, the pagenumber has been widely studied from the aspect of graphs on
surfaces. In fact, a graph G is 1-page embeddable if and only if GG is outer planar, and a graph G
is 2-page embeddable if and only if G is a subgraph of a Hamiltonian planar graph (see [2]). In
this sense, the pagenumber is closely related to graphs on surfaces.

Bernhart and Kainen [2] first conjectured that the pagenumber of planar graphs could be large
enough. However, this conjecture was disproved by Buss and Shor [3], who proved that every
planar graph is 9-page embeddable. Later this upper bound was improved to seven by Heath [10],
and finally, Yannakakis [24] showed that every planar graph has the pagenumber at most four. He
[24] also announced that there exists a planar graph which is not 3-page book embeddable, but
no proofs appeared yet, and hence we cannot verify that. For graphs on the torus, the algorithm
given by Heath and Istrail [11] guaranteed the existence of 13-page book embedding of a toroidal
graph. Endo [7] later improved this to 7-page book embedding. For a graph on the orientable
surface of genus g, Heath and Istrail [11] proved that its pagenumber is O(g), and later, Melitz [13]
improved this result to O(,/g). Note that there exists a graph of genus g with the pagenumber
0(,/9), see [11].

In contrast with situations above, only few results are known about the pagenumber of graphs
on nonorientable surfaces. Heath and Istrail [11] have added a comment, in the paper giving
the O(g) bound for the pagenumber of graphs of orientable genus g, that every graph of nonori-
entable genus k is also O(k)-page embeddable. However, they did not describe the details for the
nonorientable case, and so we cannot verify whether it is true or not. Nakamoto and Nozawa [15]
proved that every graph on the projective plane is 9-page book embeddable. In this paper, we
improve their result as follows.

Theorem 1 Let G be a graph on the projective plane. Then all of the following hold;
(i) If G is 5-connected, then G has a 3-page book embedding.
(ii) If G is 4-connected, then G has a 5-page book embedding.

(iii) G has a 6-page book embedding.

For the proof of Theorem 1 (iii), we show Lemma 11 in Section 6.1, which implies that “every
planar graph admits a 6-page book embedding”. This statement is weaker than the one by
Yannakakis [24], but the strategy of our proof is very different, using Tutte paths (see Section
3.1 for the definition). This is a key idea of this paper, and in fact, this allow us to improve the
previous result and obtain Theorem 1. Note that Yannakakis’ result is so useful that it has been
used for the proofs of several results, e.g. [7, 11, 13, 15] (see also Section 2). We expect that this
idea will give better bounds for several other cases.

This paper is organized as follows: In the next section, we give a strategy of the proofs of
Theorem 1. In Section 3, we give some terminologies and lemmas used in the proofs of Theorem
1. Then we divide the remaining part into three sections, each of which corresponds to the 5-
connected case (Theorem 1 (i)), the 4-connected case (Theorem 1 (ii)), and the case without
connectivity condition (Theorem 1 (iii)), respectively. The proofs of Theorem 1 (i)-(iii) and some
lemmas are similar, but unfortunately each one has some their own particularities, and because
of that, we have not been able to combine them.



2 The strategy of the proofs of Theorem 1

We here consider the ideas of the proofs. In fact, our proof of Theorem 1 is different from the
one by Nakamoto and Nozawa [15]. Their method is based on the decomposition of a graph on
the projective plane into two planar graphs D; and D, and a graph B on the Mobious band,
and then they used Yannakakis’ [24] result to D; and Dy, respectively. In fact, we sketchily need
four pages to the edges in Dy, four pages to the edges in D,, together with some edges in B, and
one page to almost all edges in B. Then we totally obtain a 9-page book embedding. Note that,
because of the topologically property of the projective plane, they needed to decompose a graph
into Dy, Dy and B.

On the other hand, the strategy of our proof is as follows: Similarly to the method by
Nakamoto and Nozawa, we first decompose a graph G on the projective plane into a plane graph
H and a graph on the Mébious band (Lemma 9). Then, instead of using Yannakakis’ result to
H, we take a suitable path 7T, namely a Tutte path, as a “main part” of the spine sequence.
(Lemma 5. See Section 3.1 for the definition of a Tutte path.) If G is 5-connected, then 7" must
be a Hamiltonian path, which gives a 2-page book embedding of H. (Recall that a graph admits
a 2-page book embedding if and only if it is a subgraph of planar Hamiltonian graph.) Thus,
together with an almost 1-page book embedding of the Mobious band part, we obtain a 3-page
book embedding of G, so Theorem 1 (i) holds. On the other hand, suppose that the connectivity
is not high enough (4-connected or less). In this case, T might not be a Hamiltonian path in H,
but the properties of a “Tutte path” guarantee that the vertices in H — V(T') can be decomposed
into several parts, namely “T'-bridges” with at most three attachments. For each T-bridges, we
prove the existence of suitable book embeddings (Lemmas 10 and 11), again using a Tutte path
and bridges inside. This means that, we obtain a book embedding of T-bridges, using Tutte paths
inductively. Then finally we substitute the vertices in each T-bridge to appropriate place of the
Tutte path T, and obtain a 6-page book embedding of the graph H. In addition, the edges in
E(G)— E(H) can be embedded into appropriate pages, without creating a crossings in each page.

3 Terminology and Lemmas used in our proofs

3.1 Terminologies

Formally, a k-page book embedding ¥ of a graph G is defined as a pair ¥ = (Q, &) of a sequence @
of the vertices of G and a partition & = {E*, ..., E*} of E(G) such that for any i with 1 <14 < k,
any two edges in E’ does not cross at Q. For a book embedding > = (Q, &) of a graph G, the
sequence @ is called the spine sequence of X.

Let G be a graph, and let @ be a sequence of vertices in G. For u,v € V(Q), we denote
by Q[u,v], the subsequence of @ from u to v. In addition, Q(u,v] is the subsequence of @
obtained from Q[u, v] by deleting the vertex u. Similarly, we define the subsequences Q[u, v) and
Q(u,v) of Q. We denote by @ the reverse sequence of (). For two sequences (1 = xoxy - - - T,
and Q2 = yoyi - -y of vertices with Q; N Q2 = (), we denote the sequence obtained by the
concatenation of ()1 and Q)2 by @10, that is, Q1Q2 = xox1---xryoy1 - - -y In this paper, we
regard a path in G also as a sequence of vertices. Let T" be a path in G. An edge e in G — E(T)
is a chord of T if e is not an edge in T' but connects two vertices in 7T'. Therefore, (with slightly
abuse of notation,) an edge e in G is a chord of a sequence T' if e connects two non-consecutive



vertices in 7.

For a graph G and a vertex set S of G, the subgraph of G induced by S is denoted by G[S].
A path with end vertices a and b is called an a, b-path.

Let G be a connected plane graph. The outer walk of G is the closed walk bounding the outer
face of GG. In particular, if the boundary of the outer face is a cycle, then it is called the outer
cycle of G. Let s and t be two vertices on the outer cycle C' of a 2-connected plane graph, and
let T be a path in G connecting s and ¢t. Then T divides the disk bounded by C' into at least
two regions. Now we distinguish the regions bounded by cycles in C'U T regarding whether they
appear on the left side or the right side along the path 7" from s to ¢t. Furthermore, all vertices
or edges not contained in 7" are also said to be on the left side or the right side of T', depending
on the property of their regions of C' UT.

A 2-connected plane graph G with the outer cycle C' is said to be internally k-connected with
respect to C'if for every vertex x in G — V' (C'), there exist k pairwise internally disjoint paths in G
connecting x and C' such that the end vertices in C' are all distinct. In other words, there exists
no vertex set that consists of at most k — 1 vertices and separates some vertices in G — V(C) from
C. We sometimes use the term “internally k-connected” omitting “with respect to C”. When
k = 3, an internally 3-connected graph is also called a circuit graph.

A disk graph is a 2-connected graph embedded on a disk. A disk triangulation is a disk
subgraph in which all but the outer cycle are triangular. If the outer cycle of a disk triangulation
H is also triangular, then H is indeed a triangulation of the plane.

Let T be a subgraph of a graph GG. A connected subgraph B of G is called a T-bridge, if either

e B consists of only an edge of G — E(T') with both ends on T', or

e B is the subgraph induced by all edges in a component D of G — V(T') and all edges from
DtoT.

The former is said to be trivial, while the latter is non-trivial. For a T-bridge B of GG, the vertices
in BNT are the attachments of B (on T). We say that T' is a Tutte subgraph of G if every
T-bridge of G has at most three attachments on 7. In addition, for a subgraph C of G, T is a
C-Tutte subgraph of G if T is a Tutte subgraph of G and every T-bridge of G containing an edge
of C has at most two attachments on 7. (As such a subgraph C, we usually take the outer cycle.)
A Tutte path (resp., a Tutte cycle) in a graph is a path (resp., a cycle) that is a Tutte subgraph.
See [6] for more detail on Tutte subgraphs.

Note that if G is 3-connected internally 4-connected and a C-Tutte path T satisfies |T'| > 4,
then 7' is a Hamiltonian path in G. To see that, suppose that there exists a vertex in G — V (T),
which implies the existence of a non-trivial T-bridge B of GG. If B does not contain an edge in C|
then the attachments of B on T form a cut set of order at most three such that it separates the
non-attachments of B from other part of the graph, contradicting the internally 4-connectedness.
Thus, we may assume the B contains an edge in C'. But in this case, the attachments of B form
a cut set of order two, contradicting the 3-connectedness of G.

3.2 Lemmas concerning a book embedding

It is well-known that a graph G admits a 2-page book embedding if and only if GG is a subgraph
of a Hamiltonian plane graph. The following lemma is a crucial point of the “if” part, which was
shown by Bernhart and Kainen [2]. We will use this several times in our proofs.
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Lemma 2 Let G be a 2-connected plane graph with outer cycle C, let s,t € V(C), let T be a
path connecting s and t, and let Ey, and Eg be the sets of edges e in E(G[V(T)]) — E(T') such
that e is placed on the left side (resp., the right side) of T, respectively. Then no two edges in
E(T)UEy (orin E(T) U Eg) cross at the sequence T.

In fact, Lemma 2 gives a 2-page book embedding to a subgraph of a Hamiltonian planar graph
G: We may first assume that G is a triangulation, and hence G is 3-connected and Hamiltonian
itself. (Since otherwise, we can get a plane triangulation G from G by adding edges suitably.
It is easy to see that if G is 2-page embeddable, then so G is.) Let 7" be a Hamiltonian cycle
in G. Choosing suitable triangle of G as the outer cycle C'; we may further assume that 7"
contains an edge in C, say st. Then T =T" — st is a Hamiltonian path connecting s and ¢, and
E(G) is partitioned into the three sets E(T'), E, and Eg, where E}, and Eg are defined as in
Lemma 2. Therefore, it follows from Lemma 2 that G has a 2-page book embedding (7', &), where
& = {E(T) U EL,ER}.

Another basic idea to find a book embedding is the following. This can be proven directly
from the definition of crossing of two edges. We will use Lemma 3 several times.

Lemma 3 Let () be a sequence of vertices of a graph G, let u,v € V(G), and let ajas, biby be
two edges of G. If ay,ay € V(Q[u,v)) and by, by € V(Q) — V(Q(u, v)), then the two edges ajas
and biby do not cross at Q).

3.3 Lemmas concerning Tutte paths

As we explained in the last part of Section 1, we will use a Tutte path in order to make it as a
“main part” of the spine sequence. In fact, the following two results guarantee the existence of
suitable Tutte paths. The first one was shown by Thomas and Yu [20, Theorem (2.7)]. (See also
[17, Lemma 3].) The second one is new and we prove it in this section.

Theorem 4 (Thomas and Yu [20]) Let G be a 2-connected plane graph, let C' be the outer
cycle of G, and let ey, eg,e3 € E(C). Then G has a C-Tutte cycle through ey, es, e3.

Lemma 5 Let G be a 2-connected plane graph with outer cycle C', and let s, x,t and y be four
distinct vertices on C' such that they appear in C' in this clockwise order and xt € E(G). Suppose
that G has a path from s to t through x and then y. Then G has a C-Tutte path from s to t
through x then y.

In order to prove Lemma 5, we need the next theorems. They are somewhat technical, but
they support several cases when we want to find a Tutte cycle or a Tutte path in certain graphs
on a surface. The first one was proved by Sanders [18]. Note that he showed only the 2-connected
case, but we can easily show the following, considering a block decomposition. See also [21] by
Thomassen. For the second one, see [20, Theorem (2.4)].

Theorem 6 (Sanders [18]) Let G' be a connected plane graph, let C' be the outer walk of G,
let x,y € V(G) with x # y, and let e € E(C). Assume that G contains a path from x to y
through e. Then G has a C-Tutte path from x to y through e.



Figure 1: The C’-Tutte path 7" from s to y through x, and By, By, Bs € B.1

Theorem 7 (Thomas and Yu [20]) Let G be a connected plane graph, let C' be the outer walk
of G, let x,y € V(C) witha # y, and let S C V(C') with |S| < 2. Suppose that V(Clx,y])NS = 0.
Then G has a C-Tutte subgraph consisting of the vertices in S and a path T' from x to y with
V(T)nS =0.

e
Proof of Lemma 5. Note that the subpath C'[y,t] of C' contains neither s nor . Since G has a

path from s to ¢ through x and then y, it follows from the planarity of G that G' = G — V(g(y, t])
has a path from s to y through z. Let C’ be the outer walk of the component of G’ containing
s,z and y. By Theorem 6 with specifying an appropriate edge incident with x as e, G’ has a
C'-Tutte path 7" from s to y through x. See Figure 1. Let

B = {B:Bis anon-trivial (T'U <a[y, t])-bridge of G

F
having at least two attachments on C'[y, t]}.

- Let Be B a(_nd let Sg be the set of attachments of B on 7”. Since B has an attachment on
Cly,t], B— V(C (y, t]) is either a component of G’ or a T"-bridge of G’ containing an edge in C".
Since T" is a C'-Tutte path in G, in either case, B — V(g(y, t]) has at most two attachments on
T’ that is, |Sg| < 2. Let up and vp the attachments of B on <a[y,t] such that up (resp., vg) is
as close to y (resp., t) on C'y,t] as possible. Since B has at least two attachments on C'[y, t], we
have ug # vg and C'[up,vp] is contained in <a[y,t]. For B, B’ € B, we write B’ < B if either
(i) B = B, or (ii) B’ is contained in the disk bounded by P U 5[1@, vp], where P is a path in
B connecting ug and vg. This is well-defined (not depending on the choice of P). Since G is a

(_
plane graph and C [y, t] is a subpath of the outer cycle C' of G, the binary relation < is a partial
order on B. Let B be the set of maximal elements of B with respect to the partial order <. Again
E)_y the planarity of G, we have the following; For any B, B’ € B with B # B, C[up,vg] and

C'lupr,vp] are edge-disjoint.

!The region with diagonals from the right top to the left bottom represglts the graph G’, while the ones with
diagonals from the left top to the right bottom represent non-trivial (T’ U Cly, t])—bridges of G, including By, Bs
and Bj that belong to B. The bold curve and lines represent the path 77U C'[y, t], and the dashed curves bound
the graphs B}, B; and B3, respectively.
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Figure 2: The C-Tutte path T from s to ¢ through = and then y.

For B € @, let B* be the subgraph of G induced by the union of all elements B’ € B such that
B’ < B, together with C'[up,vg], and let Cp be the outer walk of B*. Note that Cz contains
<E[UB,UB] and Sp, and V(%[’ILB,UBD N Sp = 0. By Theorem 7, B* has a Cz-Tutte subgraph
consisting of the vertices in Sp and a path T from up to vy with V(T) N Sp = 0.

Let T" be a subgraph of GG induced by

E(T') U (E(%[y,t]) - E(@[UB,UB])) u | ETs).

BeB BeB

See Figure 2. By the construction, 7" is a path in GG from s to t through = then y. Let D be
a T-bridge of G. Then it is easy to see that D is either (i) a (T U Sp)-bridge of B* for some

~ —
B e B, or (ii) a (T"U Cy, t])-bridge having at most one attachment on C'[y, ¢]. If D satisfies (i),
then since Tg U Sp is a Cg-Tutte subgraph in B*, D has at most three attachments a<_nd at most
two attachments if D contains an edge in C[ug,vp]. Note that E(C) N E(B*) C E(C[ug, vg]).

Suppose that D satisfies (ii). If D has no attachment on %[y, t], then D is a T"-bridge of G,
and hence D has at most three attachments and at most two attachments if D contains an edge
in C’. Note that E(C) N E(G') C E(C"). On the other hand, suppose that D has an attachment
on 6[y, t]. Since D — V(%(y, t]) is a T"-bridge containing an edge in C’, D — V(%(y, t]) has at
most two attachments on 7”. Therefore, D has at most three attachments on 7" in total. Suppose
further that D has exactly three attachments on T" and contains an edge in C'. This implies that
Q has at least two attachments on 7' that are contained in C. Since D has an attachment on
Cly,t] and z,y € V(T), it follows from the planarity that D has at least two attachments on
C'ly,z]. Recall that D has at most one attachment on %[y,t], and hence D has exactly two
attachments on C'[y, z] one of which is x and the other is some vertex in C'[y, t]. However, since
t € V(T) and zt € E(C), D cannot contain an edge in C, a contradiction.

Therefore, in either case, D has at most three attachments and at most two attachments if D

contains an edge in C. Hence T is a C-Tutte path in GG, and this completes the proof of Lemma
5. O



3.4 A lemma concerning spanning disk triangulations in triangula-
tions on the projective plane

The following was proven by Nakamoto and Nozawa [15].

Lemma 8 (Nakamoto and Nozawa [15]) Let G be a triangulation on the projective plane.
Then G has two vertices xg and yy and three internally disjoint x,yo-paths P, L and R such
that xoyo € E(G), L U R bounds a disk triangulation of G containing P, and P U xyyy is a
noncontractible cycle on the projective plane.

Note that the last two conditions in Lemma 8 implies that zoyy ¢ F(P)UE(L)UE(R). Using
Lemma 8, we show the following, which will give an efficient partition of edges into the disk graph
(namely H) and the graph on the Mobious band (namely G — E(H)). This will be the first step
to find a book embedding of graphs on the projective plane.

Lemma 9 Let G be a triangulation of the projective plane. Then G has a spanning disk trian-
gulation H with outer cycle C' satisfying the following;

(G1) There exist four distinct vertices s, x,t and y on C such that they appear on C' in that order,
xt € E(C), st € E(G) — E(H), and all vertices in Cly, s| are neighbors of x in G — E(H).

(G2) H has a path from s to t through x and then y.

(G3) Any edges in G — E(H) — E, connect a vertex in C[s,x] and a vertex in %[y,t], where
E, = {zz: 2 € V(C(y,s])}. Furthermore, no two edges in G — E(H) — E, cross at the

sequence C|s, x| %[y, t].

(G4) If G is b-connected, then H is 3-connected and internally 5-connected, sy € E(G), and
E, = {xs}.

(G5) If G is 4-connected, then H is an internally 4-connected disk triangulati(o_n, and in addition,
either {u,v} NV (C[s,z]) # 0 for any 2-cut {u,v} of H, or {u,v} NV (Cy,t]) # 0 for any
2-cut {u,v} of H.

Proof. Let G be a triangulation of the projective plane. It follows from Lemma 8 that G has
two vertices xy and yo and three internally disjoint o, yo-paths P, L and R such that zqyo € E(G),
L U R bounds a disk triangulation, say Hy, of G containing P, and P U xyy, is a noncontractible
cycle on the projective plane. Note that L U R is the outer cycle of Hy. We take such three
internally disjoint xg, yo-paths P, L and R so that neither L nor R do not have a chord. (If, for
example, L has a chord uv, then we can detour the path L through the edge uv.) Since G is a
triangulation, we see that Hy is internally 3-connected (and internally 4- or 5-connected if G is
4- or 5-connected, respectively). Suppose that Hy has a 2-cut {u,v}. Then since Hj is a disk
triangulation with the outer cycle L U R, we have u,v € V(L U R) and uwv € F(Hy). However,
this contradicts that neither L nor R do not have a chord (when w,v € V(L) or u,v € V(R)), or
the xo, yo-path P is contained in Hy and internally disjoint from L and R (when either u € V(L)
and v € V(R), or u € V(R) and v € V(L)). Therefore, we have that Hy is 3-connected.
Now we take a disk triangulation H of G with the outer cycle C' such that



(I) P is contained in H and V(P)NV(C) = {xg,yo}. (Therefore, xoyy ¢ E(H) since H is a
disk triangulation.)

(IT) If G is 5-connected, then H is 3-connected and internally 5-connected.

(III) If G is 4-connected, then H is an internally 4-connected graph such that {u,v} € V(Clyo, zo))
for any 2-cut {u,v} of H.

(IV) |E(H)| is as large as possible, subject to (I)—(III).

Note that H, satisfies conditions (I)—(III), and hence we can take such a disk triangulation H.
The condition (I) implies that C' is divided into two paths C[zg, yo] and C[yg, xo]. We will show
that H is a spanning disk triangulation satisfying all of the conditions (G1)—(Gb).

We first show that H is a spanning disk triangulation of G. For the contrary, suppose that H
is not spanning, that is, there exists a vertex v in G — V(H).

Suppose that G is 5-connected. Then there exist internally disjoint five paths from v to C,
say Py, Py, Ps, Py and Ps, where each P is a v, p;-path for some p; € V(C) and p; # p; for any
1 <17 < j < 5. Taking such paths as short as possible, we may assume that none of the paths
Py, Py, P53, P, and P5 have a chord. By symmetry, we may further assume that p;, p, and ps are
distinct vertices on Clzo, o], C[p1,ps] is a subpath of Clzg, yo], and p» € V(C(p1,ps)). Now if
we let H' be the disk triangulation of G bounded by C’ = P, U P; U C|ps, p1], then H' is a disk
triangulation of G satisfying condition (I) and E(H) C E(H'). Furthermore, since P, and P; has
no chord, we see that C’ has no inner chord, and hence H’ is 3-connected. Therefore, H also
satisfies conditions (II) and (III), which contradicts the condition (IV) for H.

Suppose next that G is not 5-connected, but 4-connected. In this case, the condition (IT) is
automatically satisfied. There exist internally disjoint four paths from v to C, say P;, P», P3 and
Py, where each P, is a v, p;-path for some p; € V(C) and p; # p; for any 1 < ¢ < j < 4. Taking
such paths as short as possible, we may assume that none of the paths P, P,, P; and P, have a
chord. By symmetry, we may further assume that either

(i) p1,pe and ps are distinct vertices on Clxo, o], C[p1, ps] is a subpath of Clxg, yo], and py €
V(C(p1,ps)), or

(ii) p1 and po are distinct vertices on Cyg, zo, and C[p1, p2] is a subpath of Clyo, zo].

In the case (i), let H' be the disk triangulation of G bounded by C' = P, U P3 U Clps, p1];
Otherwise, let H' be the disk triangulation of G bounded by C" = P, U P, U Clps, p1]. In either
case, H' satisfies condition (I) and F(H) C E(H’). Furthermore, if the case (i) occurs, then the
addition of the subgraph bounded by P; U P3 U Clpy,p3] to H does not create new 2-cuts; if the
case (ii) occurs, then it might create new 2-cuts, say {u,v}, but we have u,v € V(P1 U Pg) C
V(C’[pl,pg]) - V(C”[yo,xo]). In either case, H also satisfies condition (III), which contradicts
the condition (IV) for H.

Suppose finally that G is not 4-connected. In this case, the conditions (II) and (III) are
automatically satisfied. By the 3-connectedness of a triangulation GG, there exist internally disjoint
three paths from v to C, say Pj, P, and P, where each P; is a v, p;-path for some p; € V(C)
and p; # p; for any 1 < i < j < 3. By symmetry, we may further assume that p; and p, are
distinct vertices on C|xg, yo], and C[p1, p2] is a subpath of Clzg, yo]. Now if we let H' be the disk



Y1 T2

Z1 Yo

Figure 3: Two figures of a graph G together with the vertices xg, o, s,t,y" on C: In the left side,
the spanning disk triangulation H is centered with the outer part K, while the Mobious band
including K’ is centered in the right side.

triangulation of G bounded by C' = P; U Py U Clps, p1], then it follows from the same way as
in the previous paragraphs that H' satisfies condition (I) and E(H) C E(H’), contradicting the
condition (IV).

This concludes that H is a spanning disk triangulation of G. Then we show that H satisfies
the conditions (G1)—(G5) for particular vertices « and y. In fact, the vertices zy and y, are
candidates of those vertices, respectively, but we need to change them when G is 5-connected.
(When G is not 5-connected, then as we will see later, we set = zg and y = yo.)

By condition (I), we have zoyo € E(G) — E(H). Let

%
W = Clyo, xo] U zoyo U C o, 7o) U Zoyo

be the closed walk in GG, and let K be the subgraph of G bounded by W. See Figure 3, where in
the right side, we put W = Clyy, 3] Uzoys U C'ly2, 1] Uzyyy with xo = 21 = 29 and yo = y1 = 4
in GG, distinguishing two appearances of xy and y in the boundary walk W of K. Note that
K has no inner edge e = wv with u,v € V(Cly1,z5]) but wv ¢ E(Clyy,2]). (For otherwise,
replacing the path Clu, v] (or C[v,u]) with uv, we can modify H to increase |E(H)|, contradicting
to the condition (IV).) Similarly, K has no inner edge e = wv with u,v € V(%[yg,xl]) but
uv ¢ E(g[yg,xl]). Let iy € V(C’[yl, xg]) and t € V(g[yg, xl]) such that yy/ € E(C’[yl,xg]) and
z1t € E(C[yz, 1]). Note that ¢/, o, t,yo appear on C in this order. Since G is a triangulation,
either 71y € E(G) — E(H) or yit € E(G) — E(H). Here we suppose that the former occurs
and proceed the proof, but even when the latter occurs, the same argument can work. (In
the case y1t € E(G) — E(H), the latter holds in the condition (G4), while the former holds if
x1y € E(G) — E(H). This is the only difference between two cases.)

We take a vertex s in C[y/, z2) so that szy € E(G) — E(H) and C[s, x9] is as short as possible.
This choice implies that st € E(G) — E(H). Since H is a disk triangulation and C[y;, z2] has no
chord, we see that all vertices in C|yy, s| are adjacent with 21 in G—E(H). Let © = x¢ = x1(= x3).
If G is 5-connected, then we let y be the neighbor of s in C[y,, s]; Otherwise let y = yo = y1(= y2).
Let E, = {zz : z € V(C(y, s]) }. This choice imply that the conditions (G1) and (G4) are satisfied.
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Then we check the condition (G2). Suppose first that G is not 5-connected. Then it follows
from the condition (I) and the fact x = xy and y = yo that P is a path from x to y in H —
(V(C) — {z,y}). Then combining P, C[s,z] and C'[y,t], we obtain a path in H from s to ¢ that
passes through = and then y. This shows that the condition (G2) is satisfied.

Suppose next that G is 5-connected. It follows from the condition (II) that H is 3-connected,
and hence H has internally disjoint three paths from x to y. This, together with the planarity,
directly implies that H — (V(C) — {z,y}) has a path from = to y. Thus, by the same way as in
the previous paragraph, we can find a path in H from s to ¢ that passes through x and then .
Thus, the condition (G2) is satisfied also in this case.

Next, we show that the condition (G3) is satisfied. It is easy to see that each edge in G —
E(H)— E, connects a vertex in C[s, 5] and a vertex in C'[ys, t], which implies the first part of the
condition (G3). Let K’ be the disk trlangulatlon of G bounded by the cycle D' = C[s, xo] Uxays U
g[y% t] Uts. Note that D = C[s, x5] U xoys U C [y, t] is a Hamiltonian path in K’ connecting s
and t, s,t € V(D’), and all edges in K" appear in the same side of the path D or are contained
in D. Therefore, it follows from Lemma 2 that no two edges ir<1_ K’ cross at D. Note that
E(G)—E(H)—E, C E(K'). Therefore, since the sequence C|[s, ] C'[y, t] has the same sequence
as the path D, we see that no two edges in E(G) — E(H) — E,, cross at C[s,z| C'[y,t], and hence
the condition (G3) also holds.

So, it only remains to show the condition (G5). Suppose that G is not 5-connected, G is
4-connected and there exists a 2-cut {u,v} of H. By the condition (IIT), we have {u,v}N €
V(Cly,z]) # 0, and by the symmetry between u and v, we may assume that C[u,v] C C[y, z].
To show the condition (G5), suppose contrary that {u,v}N € V(C[s,z]) = 0, which directly
implies u,v € V(C[y, s]) It follows from the condition (G1) that all vertices in C[u,v] are
neighbors of x in G — E(H). This implies that u,v and x form a cut-set of G of size at most
three separating the non-attachments of B from others, which contradicts the 4-connectedness of
G. Therefore, B contains no edge in C|y, s], and hence B contains an edge in C|[s, x].

This completes the proof of Lemma 9. [

4 H-connected case

Proof of Theorem 1 (i). Let G be a 5-connected graph on the projective plane. We first show
that we may assume that G is a triangulation. Suppose that G is not triangulation. Then G has
a facial cycle vivy - - - vpv; for some k > 4.

If £ > 5, then let G be the graph obtained from G by adding a new vertex z inside of the face
bounded by vyvs - - - vpv; and joining z to all the vertices vy, vq, ..., vk, Since k > 5, it is easy to
see that G is also 5-connected. Furthermore, if G is 3-page embeddable, then so GG is. Therefore,
we may assume that G does not has a facial cycle of length at least 5. So, assume that & = 4.
If G has no edge connecting vy and v3, then we can add the edge vyv through the face, keeping
the embedding on the projective plane. Note that the new graph, say G is 5-connected, and if G
is 3-page embeddable, then so G is. Thus, we may assume that vv3 € E(G). By symmetry, we
may also assume that vov, € F(G). These two imply that G contains a copy of K, as a subgraph,
and is embedded on the projective plane so that it has only three quadrangular faces (one of
which is the face bounded by wvjvovzvgvy). Since G is 5-connected, the regions corresponding

11



Figure 4: A 3-page book embedding of a 5-connected graph on the projective plane. 2

those three quadrangular faces cannot contain any vertices in GG, which implies that G is itself
K4, a contradiction. Therefore, we may assume that G is a triangulation.

By Lemma 9, G has a spanning disk triangulation H with outer cycle C' satisfying the condi-
tions (G1)—(Gb5).

By condition (G3), H has a path from s to ¢ that passes through x, and then y. Then it
follows from Theorem 5 that H has a C-Tutte path T from s to ¢ that passes through x, and then
y. Since H is 3-connected and internally 5-connected, T is a Hamiltonian path in H. It follows
from the planarity that the vertices C[s, x| C'[y,t] appear in T in this order. By the symmetry,
we may assume that the edges in C[s, x| are contained in T" or placed on the left side of T'. See
Figure 4. Thus, the edges in <a[y, t] are contained in T or placed on the right side of T. Let E
(resp., Er) be the sets of edges e in E(H) — E(T') such that e is placed in the left side (resp., the
right side). Since 7' is a Hamiltonian path in H, we have E(H) = E(T)U E U Ep.

Let FE' = E(T)UEp, E? = ELUE,, and FE® = E(G)— E(H) - E,.

Note that & = {E', E? E®} is indeed a partition of E(G). It follows from Lemma 2 and
condition (G3) that no two edges in E', or in E? — E,, or in E® cross at T. (Recall that
Cls, x]g[y, t] appear in T in that order.) Therefore, since E, = {sx}, it suffices to prove that no
edge in Fy, crosses sz at T

Let ajay € Er. Then we see that either aq,ay € V(T[s,x]) or aj,as € V(T[x,t]), which
implies that in either case, the edges a;as and sx do not cross at T by Lemma 3. Therefore, this
completes the proof of Theorem 1 (i). O

2In all figures in this paper, the number in a square indicates the index of the set E? containing those edges.
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5 4-connected case

5.1 A crucial lemma for 4-connected case

To prove Theorem 1 (ii), we first show the following lemma, which will be used to find a suitable
book embedding of inside of each T-bridge.

Lemma 10 Let H be an internally 4-connected disk triangulation with outer cycle C, and let u, v
be two vertices on C' with uv € E(C'). We give an orientation to C' so that C|v,u| consists of only
the edge uv. Then H — uv has a 3-page book embedding ¥ = (Q, &), where & = {E', E?, E3},
satisfying the following;

(P1) w is the first vertex in ) and v is the last vertex,
(P2) the vertices on Clu,v]| appear in @) in this order, and
(P3) all edges connecting {u,v} and V(H) — {u,v} belong to E*.

Proof of Lemma 10. We show Lemma 10 by induction on |H|. If |[H| = 3, then it is easy to
see that Lemma 10 holds. Hence we may assume that |H| > 4. Let e; and ey be the two edges in
C' such that e; is incident with u and e; # wwv, and es is incident with v and ey # wv. If |C| = 3,
(so C consists of only the three edges uv,e; and ey,) then the internally 4-connectedness of H
implies that V(H) — V(C) = (), which contradicts that |H| > 4. Therefore, we have |C| > 4.

It follows from Theorem 4 that H has a C-Tutte cycle 7" through wv,e; and ey. Let T be
the path obtained from 7" by deleting the edge wv. By symmetry, we may assume that 7" has a
direction from u to v and the interior of T” is placed on the right side of T'. Note that the vertices
in V(Clu,v]) N V(T) appear in T in the order of C[u,v] and all the edges in C[u,v] are either
contained in 7" or placed on the left side of T

Let Ey, and ER be the sets of edges e in E(H [V (T)])—E(T) such that e is placed on the left side
(resp., the right side) of T'. Note that E(H[V(T)]) = E(T)UEL,UEg and E(C[u,v]) C E(T)UEL.
Since uv, e1, s € E(T") and the interior of 7" is placed on the right side of T, we have the following
claim.

Claim 1 All edges incident with u or v, except for uv, ey, e, are contained in Eg.

Here we will regard T' as a “main part” of a desired sequence @) of V(H), and appropriately

insert the vertices in H — V(T'). Let
B = {B: B is a non-trivial T-bridge of H}.

By the definition of non-trivial T-bridges, every edge in H is either an edge connecting two vertices
in T or contained in B for some B € B, and hence

BeB

Let B € B. We first claim that B contains an edge in Cfu, v] (so, B is placed on the left side)
and has exactly two attachments on 7. Since T” is a C-Tutte cycle in H, B has at most three
attachments on 7. So, if B does not contain an edge in C'u, v], then the attachments of B form a

13



cut-set of H of size at most three such that it separates the non-attachments of B from C', which
contradicts that H is internally 4-connected. Therefore, B contains an edge in C[u,v|. Since 7"
is a C-Tutte cycle in H, B has at most two attachments on T'. Since H is 2-connected, B has
exactly two attachments on T'. Therefore, the claim holds.

Let up and vg be the two attachments of B on T. Since H is a disk triangulation, we see
that ugpvg € F(H) but ugvp ¢ E(B). We may assume that u,up,vg and v appear in T in this
order. (This choice implies that for any By, By € B with By # Bs, we have up, # up,.) Note that
B + {vgug} is an internally 4-connected disk triangulation with outer cycle Clug,vg] U vgug,
say Cg. Then by the induction hypothesis to B + {vgug} with ug,vp playing the roles of v and
v, respectively, B has a 3-page book embedding (Qp,&5), where &g = {EL, E%, E%}, such that
(P1) up is the first vertex in @ p and vg is the last vertex, (P2) the vertices on Cglup, vg] appear
in Qp in this order, and (P3) all edges connecting {ug,vp} and B — {up,vg} belong to E}.

Now we insert the sequence Qp(upg,vg) to T just after ug in T. That is, we obtain the new
sequence

Tu,up| @p(up,ve) T(ug,v].

We do the above insertion for all B € B independently, and let () be the obtained sequence of the
vertices in H. Note that @) contains all vertices of H, and @ satisfies condition (P1). Since the
vertices in V' (C[u, v]) N V(T) appear in T in the order of C[u,v], it follows from condition (P2)
for each B € B and the construction of @) that @) also satisfies condition (P2). Now we partition
all edges in H — {uv} into three sets as follows; Let

E' = (En—{w})u|JEE  E>=EMUEU|JE, ad E* = JE}

Be3B BeB BeB

See Figure 5. Recall that E(H[V(T)]) = E(T)UE UEg and E(H)—E(H[V(T)]) = Upges E(B).
Since {E}, E%, F3} is a partition of E(B), {E', E?, E3} is indeed a partition of F(H) — {uv}.
Furthermore, it follows from Claim 1 that the partition satisfies condition (P3). Thus, it suffices
to prove that no two edges in E’ cross at Q for any 1 < i < 3. Let ¢ € {1,2,3} and ajas, bibs € E".

Case 1. 1 = 1.

If ajas,b1bs € Er — {uv}, then it follows from Lemma 2 that they do not cross at 7', and
hence at Q). Therefore, we may assume that aja, is contained in E% for some T-bridge B in B.
By condition (P3) for B, we see that {a1,as} N{up, v} =0, and hence ay,as € V(QB(UB,UB)).
Note that Qp(up,vp) is a subsequence of Q. If b1by, € F%, then since (Qp, &p) is a 3-page book
embedding of B, the edges aias and b1by do not cross at ()5, and hence at (); Otherwise it follows
from the construction of @ that by, by € V(Q) — V(Q s(ug, UB)), and hence it follows from Lemma
3 that ajas and b1by do not cross at (), neither. In either case, we see that a;as and biby do not
cross at (), and we are done.

Case 2. 1 = 2.

This case can be proven by the same way as Case 1. If ajas,biby € E(T) U Ey, then it
follows from Lemma 2 that they do not cross at T', and hence at (). Therefore, we may assume
that ajay is contained in E% for some T-bridge B in B. By condition (P3) for B, we see that

4In all remaining figures in this paper, each region with diagonals from the right top to the left bottom represents
a non-trivial T-bridge.
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Figure 5: A 3-page book embedding of an
internally 4-connected disk triangulation. 4

Figure 6: A 5-page book embedding of a 4-
connected graph on the projective plane.

{a1, a2} N {up,vp} = 0, and hence a,as € V(Qp(up,vp)). If biby € EY, then since (Qp, &p)
is a 3-page book embedding of B, the edges ajas and byby do not cross at (), and hence at Q;
Otherwise by the construction of (), we have by, b, € V(Q) — V(QB(uB, UB)), and hence it follows
from Lemma 3 that a;as and b1by do not cross at (), neither. In either case, we see that aias and
b1bs do not cross at (), and we are done.

Case 3. 1 = 3.

Note that a;a, is contained in E}B for some T-bridge B in B. If b1by € E]13, then since (Qp, &5)
is a 3-page book embedding of B, the edges ajas and biby do not cross at (), and hence at Q).
Thus, we may assume that bjby ¢ E%, and hence it follows from the construction of @ that
bl,bg c V(Q) — V(QB(UB,UB)). SO, if a; # vg and a9 75 vg, then a1, 09 € V(QB[UB,UB)), and
hence it follows from Lemma 3 that a;as and bibs do not cross at ). Therefore, by the symmetry
between a; and ay, we may assume that as = vg. By the symmetry between a;as and bibs, we may
also assume that bjby € E5, and by = vps for some B’ € B with B’ # B. Note that both of the
edges upvp and ugvp are contained in F(7) U Ey, and hence it follows from Lemma 2 that the
vertices upg, vp, up, v appear in T in this order or in the order of up/,vp,up,vp. Note that it
follows from construction of @) that the vertices in Qg (up,vg) (resp., the vertices in Qp/(up/, vp))
appear just after up (resp., up/). Since a; € V(QB(uB,vB)) and b, € V(QB/<UB/,UB/)), we see
that the edges ajas and b1by do not cross at (). This completes the proof of Case 3, and the proof
of Lemma 10. O

5.2 Proof of Theorem 1 (ii)

Let G be a 4-connected graph on the projective plane. To find a book embedding of G, we may
assume that G is a triangulation. (If G is not a triangulation, then we can get a 4-connected
triangulation G from G by adding vertices and edges suitably. It is easy to see that if G is 4-page
embeddable, then so G is.) By Lemma 9, G has a spanning disk triangulation H with outer cycle
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C satisfying conditions (G1)—(G5).

By condition (G2), H has a path from s to ¢ that passes through x, and then y. Then it
follows from Theorem 5 that H has a C-Tutte path T from s to t that passes through z, and
then y. By the symmetry, we may assume that the edges in C|[s, x] are contained in T" or placed
on the left side of 7T'. Thus, the edges in g[s, t] are contained in 7" or placed on the right side of
T. Let Ey, (resp., ER) be the sets of edges e in E(H) — E(T') such that e is placed in the left side
(resp., the right side), respectively. Note that E(H[V(T)]) = E(T) U EL U Ek.

Let B = {B: B is a non-trivial T-bridge of H}.

By the definition of non-trivial T-bridges, any edge in H is either an edge connecting two vertices
in T or contained in B for some B € B, and hence

E(H) - E(HV(T)) = |J E(B).

BeB

We first claim that either B contains an edge in Cls, z] for any B € B, or B contains an edge
in <5[y, t] for any B € B. Since T is a C-Tutte path in H, B has at most three attachments on
T. So, if B does not contain an edge in C, then the attachments of B form a cut-set of G of size
at most three such that it separates the non-attachments of B from others, which contradicts the
4-connectedness of G. Therefore, B contains an edge in C'. Furthermore, since T is a C-Tutte
path in H, B has at most two attachments on 7. Since GG is 2-connected, B has exactly two
attachments on T'. It follows from the condition (G5) that B contains an edge in C|[s,z] or in
<= .

C'ly,t]. Therefore, the claim holds.

Since two cases are symmetric, we may assume that the former holds, that is, B contains an
edge in C[s,z] for any B € B. This implies that any B € B has exactly two attachments on
T|s, z].

Let up and vg be the two attachments of B. Since H is a disk triangulation, we see that
upvp € E(H) but ugvg ¢ E(B). By the symmetry, we may assume that s, ug,vg and = appear
in 7" in this order (Possibly s = ug and/or vp = x). This choice implies that Clug,vg] C Cls, x|,
and for any By, By € B with By # Bs, we have up, # up,. Note that B+ {vgug} is an internally
4-connected disk triangulation with outer cycle Clug,vg| Uvgup, say Cg. Then it follows from
Lemma 10 that B has a 3-page book embedding (Qg, &g), where & = {E§, E%, E%} such that
(P1) up is the first vertex in @ p and vg is the last vertex, (P2) the vertices on Cglup, vg] appear
in Qp in this order, and (P3) all edges connecting {ug,vp} and B — {up,vg} belong to E}.

Now we insert the sequence Qg(upg,vp) to T just after ug in T. That is, we obtain the new
sequence

T'[S7 ’LLB] QB(UB, UB) T(UB, t]

We do the above insertion for all B € B independently, and let () be the obtained sequence of
the vertices in G. Note that ) contains all vertices of G. Since the vertices C[s, z] NV (T') appear
in T in the order, it follows from condition (P2) for each B € B and the construction of @) that
@ contains the vertices in C[s,z] Cly,t] in this order.

Let
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E' = EpU|JEL E* = EMUELU|JE},

BeB BeB

B = |JE} E' = EG)-EMH)-E, ad E = E,.
BeB

See Figure 6. Recall that E(H[V(T)]) = E(T)U EL U Eg and E(H) — E(H[V(T)]) =
Upes E(B). Thus, since {Eg, E%, E}} is a partition of E(B), {E', E?, E3} is indeed a partition
of E(G). So, it suffices to prove that no two edges in E’ cross at @ for any 1 < ¢ < 5. Indeed,
we can prove this by the same way as Case 1-3 in the proof of Lemma 10 (for 1 < ¢ < 3), by
the condition (G3) (for ¢ = 4), and by the fact that all edges in FE, share = as an end vertex (for
i =5). This completes the proof Theorem 1 (ii). O

6 The case without connectivity assumption

6.1 A crucial lemma

To show Theorem 1 (iii), we need the following lemma. (See Figure 7.)

Lemma 11 Let H be a plane triangulation such that |H| > 4, let uvw be the outer cycle of
H, and let C' be the outer cycle of H — w. We give an orientation to C' so that Clv,u] consists
of only the edge uv. Then H — {uv,vw,wu} has a 6-page book embedding ¥ = (Q, &), where
& ={FE*', ..., E°®}, satisfying the following;

(Q1) w is the first vertex in @), v is the second last vertex, and w is the last vertex,
(Q2) the vertices on Clu,v] appear in @) in this order,

(Q3) all edges connecting u and V(H) — {u,v,w} belong to E*,

(Q4) all edges connecting v and V (H) — {u,v,w} belong to E?, and

(Q5) all edges connecting w and V(H) — {u,v,w} belong to E*.

Proof of Lemma 11. We show Lemma 11 by induction on |H|. If |H| = 4, then it is easy to
see that Lemma 11 holds. Hence we may assume that |H| > 5. Let H' = H —w. Since any plane
triangulation is 3-connected, H' is 2-connected.

Note that C' is the outer cycle of H' with uv € E(C). Let e; and ey be the two edges in C
such that ey is incident with u and e; # wv, and es is incident with v and ey # wv. It follows
from Theorem 4 that H' has a C-Tutte cycle 7" through uv, e; and e;. By the symmetry, we may
assume that the interior of 7" is placed on the right side of 7". (See Figure 8.)

We may assume that 7" — {uv} is a sequence starting from u and ending at v, and let 7" be
the sequence obtained from 7" — {uv} by adding the vertex w in the last. Note that T satisfies
the condition (Q1), and we see that the vertices in V(C[u,v]) N V(I") appear in T in the order
of Clu,v]. Since uv,ei,e5 € E(T') and the interior of 7" is placed on the right side of 7", the
following claim holds.
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Figure 7: A 6-page book embedding desired in Theorem 11.

Figure 8: A C-Tutte cycle T" through uv, e;

Figure 9: The non-trivial T-bridges By, Bs, ..., B,
and es.

in BL and By, ..., B, in BE.
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Claim 2 All edges incident with u or v, except for uv, uw,wv, ey, e, are placed on the right side
of T, and all edges incident with w are placed on the left side of T".

Let El, E2, E3 and E] be the sets of edges e in E(H[V(T)]) — {uv, vw, wu} such that
e if e is incident with v, then e € E?,
e if ¢ is incident with w, then e € E3,

e if ¢ is placed on the right side of T or a chord of T' and e is not incident with v, then e € E,
and

e if ¢ is placed on the left side of 7" and e is not incident with w, then e € Ej,

respectively. Note that the set { £}, E3, By, Ej } is indeed a partition of E(H[V(T)]) — E(T) —
{uv,vw, wu}. By Claim 2, all edges incident with u are contained in E}, except for uv.

Here we will regard T' as a “main part” of a desired sequence @) of V(H), and appropriately
insert the vertices in H but not in 7. To do that, we need some definitions. Let

B = {B: B is anon-trivial T-bridge of H}.

By the definition of non-trivial T-bridges, each edge in H is either an edge connecting two vertices
in T or contained in B for some B € B, and hence

E(H) - E(HV(T)) = |J E(B).

BeB

Let B € B. Note that B is a T-bridge of H. We first claim that B has exactly three
attachments on T'. Since H is 3-connected, B has at least three attachments on T'. So, if w is not
an attachment of B on T, then B has exactly three attachments on 7”, and hence on 7. (Recall
that 7" is a C-Tutte cycle in H'.) So, suppose that w is an attachment of B on T. Then B — w
is a T’-bridge of H' and contains an edge in C. Again since 1" is a C-Tutte cycle in H', B has
exactly two attachments on 7", and hence B has exactly three attachments on 7" one of which is
w. Therefore, the claim holds.

Let ug,vp and wg be the three attachments of B. Since H is a disk triangulation, we see
that upvp,vpwp, wpup € E(H) but ugvg,vpwp,wpug ¢ E(B). We may assume that ug,vg
and wpg appear in T in this order. This condition and the places of u, v and w in T directly imply
that ug # v, w, vg # u,w and wg # u. Furthermore, if v is an attachment of B, then it follows
from Claim 2 that B is placed on the right side, which implies that w is not an attachment of B.
Therefore, we also have vp # v. This argument implies the following claim.

Claim 3 (1) Ifu is an attachment of a non-trivial T-bridge B in B, then u = up.
(2) Ifwv is an attachment of a non-trivial T-bridge B in B, then v = wg.

(3) If w is an attachment of a non-trivial T-bridge B in B, then w = wg.
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For B € B, note that B + {upvp,vpwp, wpup} is a plane triangulation with outer cycle
upvpwp. Let Cp be the outer cycle of B + {upvg} — w such that Cglvp,up] consists of only
the edge upvp. By the induction hypothesis to B + {upvp,vgwp, wpup} with up,vg and wg
playing the roles of u,v and w, respectively, B has a 6-page book embedding (Qp, &), where
&g = {E%, ..., E%}, such that (Q1) up is the first vertex in Qp, vp is the second last vertex,
and wp is the last vertex, (Q2) the vertices on Cglup,vp] appear in @ in this order, (Q3) all
edges connecting ug and V(B) — {up,vp,wp} belong to Fy, (Q4) all edges connecting v and
V(B) — {up,vp,wp} belong to £%, and (Q5) all edges connecting wp and V(B) — {ug, v, wp}
belong to E3,.

Here, we say that a non-trivial T-bridge B in B is a corner if wg = w. It is easy to see that B
is a corner if and only if B—{upg,vp,wp} contains a vertex in C[u, v]. Furthermore, the planarity
directly implies the following;

Claim 4 For each corner T-bridge B in B, we have Cglup,vg] = C N B, and ug # up for any
corner T-bridges B" in B with B’ # B.

Let z € V(T). Define BL (resp., BE) as the set of non-trivial T-bridges B in B such that
up = z and B is placed on the left side (resp., the right side) of 7". Let By, ..., B, be the elements
in BL along the clockwise order around z, where p = |BL|. (See Figure 9.) It follows from Claim
4 and the planarity that if there exists a corner T-bridge B in B with ug = 2, then B = By, and
furthermore,

the vertices u, z,vp,,wp,,vp .., Up,, Wp,,w appear in T in this order. (1)

p—17"°

(Possibly, wg, = vp,_,, and/or ---, and/or wg, = w.) Similarly, let B,1,..., B, be the elements
in B2 along the clockwise order around z, where ¢ = p + |B%|. (See Figure 9.) Again, it follows
from the planarity that

the vertices u, 2,vp, |, WB,,1;VB, s, - - -, VUB,; WB,, VU, w appear in T in this order. (2)

(Possibly, u = z, and/or wg,,, = vp, , and/or ---, and/or wp, = v.) Now we insert the sequence

QB1(27 UB1) QBQ(Z7 UB2) e QBP(Z7 'UBp) QBq (Za UBq) QBqﬂ (Z, UBqﬂ) e QBp+1 (Z’ UBp+1)

to T just after z in T'. That is, we obtain the new sequence

T[u7z] QBI (27031) QBp(Z’UBp) QBq(zvaq) QBp+1 (Z’UBp+1) T(Z7w]'

We do the above insertion for all z € V(T') independently, and let @) be the obtained sequence of
the vertices in H. By Claims 3 (2) and (3), v,w # up for any B € B, and hence no vertices are
inserted after v. Therefore, @) satisfies the condition (Q1). Furthermore, it follows from Claim
4 and the condition (Q2) for @Qp that @ satisfies the condition (Q2). Now we will partition all
edges in H — {uv, vw, wu} into six sets so that no two edges in a same set cross at ). To do that,
we first partite all edges in |Jpeq B into six sets Ef, ..., EY as follows; Let
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Figure 10: A 6-page book embedding of a plane triangulation. The thick curve represents the
path T in H — w from u to v, and B, B’ € B.

b= U (U Ev U Ep) B} = (U Esu U B,
2€V(T) BeBL BeBE 2eV(T) BeBL BeBE

g = U (U#EvU e, Ef = (U Ev U B).
zeV(T) BeBL BeBE zeV(T) BeBL BeBE

B = <UE}9UUE]53>, and  ES = (UE%UUE%)
z€V(T) BeBL BeBE 2€V(T) BeBL BeBE

See Figure 10. Since & = {F}g,..., E%} is a partition of F(B) for any B € B, we see that
{E},..., E$} is a partition of gy E(B) = E(H) — E(H[V(T)]). For those sets Ef,..., EY, we
show the following claim.

Claim 5 For any integer i with 1 < i < 6, any two edges in Ei do not cross at Q.

Proof. Letie {1,2,3,4,5,6} and let ayas and b;by be two edges in E%. By the definition of EY,
the edge ajay is contained in some T-bridge B in B. If bjby € E(B), then since the pair (Qp, &5)
is a 6-page book embedding of B and ajas, biby € Ef_;; € &p for some 1 < 57 < 6, we see that
ai1as and biby do not cross at (Qp. Since the vertices in () appear in () in the same order, aias
and by1by do not cross at @, neither. Thus, we may assume that b;by, ¢ F(B), which implies that
b1by € E(B') for some B’ € B with B’ # B. In particular, since the vertices in Q)g(up,vg) appear
in @) consecutively, we have by, by € V(Q) — V(QB(UB,UB>). Thus, if {a1, a2} N{up,ve,wg} =0,
then aq,as € V(Q s(ug, UB)), and hence it follows from Lemma 3 that ajae and b;b, do not cross
at Q. Therefore, we may assume that {ay,as} N {up,vp,wg} # 0. By the symmetry between
aiay and biby, we may also assume that {by, by} N {up, vp, wp} # 0.

Case 1. a; = ug or ap = ug or by = up or by = upr.

Say a; = up by symmetry. It follows from the condition (Q3) for B that ajay € EL. Then by
the definition of E}, ..., ES we have aja; € E}UE}, and hence i = 1,5 and byby € E} UE?. Since
{b1,b2} N {up, v, we} # 0, it follows from the conditions (Q3)—(Q5) for B" and the definitions
of E{ and E} that bjby € EL,, and either by = up or by = ug. By the symmetry, we may
assume that by = ug,. If ug = ups, then the edges aias and byby share the end vertex ug, and
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hence they do not cross at (). Therefore, we may assume that ug # ug. Then it follows from
the construction of @) that by, by & V(Q[UB,UE)), where ug is the successor of ug at T. Since
ay,as € V(Q[uB,ujg)), it follows from Lemma 3 that ajas and b1by do not cross at (). This
completes the proof of Case 1.

Case 2. ay, as 7£ up and bhbg 7é up.

By the condition of this case, we have {a;,as} N {vg,wp} # 0 and {by, b} N {vp, wg} # 0.
By the symmetry between a; and as, we may assume that as = vg or as = wg. Then it follows
from the conditions (Q3)—(Q5) for B that a; # up and exactly one of the following holds;

(i) i =2, ajay € B3 C E?, ay = wp and B € BE for some z € V(7).

(ii) i =3, ajas € E% C E}, ay = wg and B € BL for some z € V(7).

(iii) i =4, a1ay € E% C E}, ay = vg and B € BE for some z € V(T).

(iv) (

We here only prove the cases (i) and (ii), since the cases (iii) and (iv) can be shown in the same
way as the cases (i) and (ii), respectively. (Indeed, the only difference of those proofs are the

vertices vp and wpg for as and by. If we replace the vertex wg with vg and replace wg with vg
in the following arguments, then we obtain the proofs of the cases (iii) and (iv), respectively.)

i =6, aiay € E% C EY ay = vp and B € BL for some 2z € V(7).

Case (i).

By the condition that ¢ = 2 and the symmetry between ajas and b0y, we may assume that
by # up and by = wg for some B’ € BE and some 2’ € V(T) with B’ # B.

Suppose that z # 2. By the symmetry between ajay and biby, we may assume that z
is closer to w in T than z’. (That is, the vertices u,z and 2’ appear in T in this order,
possibly u = z.) Since both B and B’ are placed on the right side of T, it follows from
Lemma 2 that the edges zwp and z'wpg do not cross at 7. This implies that the vertices
z,wg, 2, wr appear in T in this order or in the order z,z’,wp/,wp. Then it follows from the
construction of @ that z,Qp(z,vp),ws, 2, Qp (2, vp ), wp appear in @ in this order or in the
order z,Qp(z,vp),2',Qp (7 ,vp), wp,wp. Note that a; € V(QB(Z,UB)), b € V(QB/(Z/,UB/)),
as = wp, and by = wp,. Therefore, the vertices aq, as, by, by appear in () in this order or in the
order ay, by, b, as, respectively. In either case, the edges aya, and b1by do not cross at Q).

Therefore, the case z = 2’ only remains. By the symmetry between ajas and b1by, we may
assume that B = B; and B’ = B; for some p+ 1 < i < j < ¢, where B = {Bp+1,...,Bq}.
It follows from (2) that the vertices z,wp,, wp, appear in T in this order. This, together with
the construction of @, implies that 2, Qp,(z,vp;), @5,(2,vs,), W, ws, appear in Q) in this order.
Note that b; € V(QBj(z,ij)), a; € V(QBZ.(Z,UBZ.)), az = wp,, and by = wp,. Therefore, the
vertices by, ay, as, by appear in () in this order, which implies that the edges aias and b1by do not
cross at . This completes the proof of the case (i). O

Case (ii).

The proof of the case (ii) is similar to the proof of the case (i). By the symmetry between a;as
and b;by, we may also assume that b; # up and by = wp for some B’ € BE and some 2’ € V(T)
with B’ # B.
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If z # 2/, then by the same way as in the proof of the case (i), we see that the edges ajas and
b1by do not cross at ). Therefore, we may assume that z = z’. By the symmetry between a,a, and
b1by, we may assume that B = B; and B’ = B; for some 1 < i < j < p, where B. = {Bl, e Bp}.
It follows from (1) that the vertices z,wp,, wp, appear in T in this order. This, together with
the construction of @, implies that z,Qp,(2,vg,), @5, (2, vB,), wn,, wp, appear in () in this order.
Note that a; € V(QBi(z,vBi)), b, € V(QBj(z,ij)). az = wp,, and by = wp,. Therefore, the
vertices ay, by, by, as appear in () in this order, which implies that the edges aias and b1by do not
cross at ). This completes the proof of the case (ii), and the proof of Claim 5. [

Now we partition all edges in H — {uv, vw, wu} into six sets F', ..., E% such that no two edges
in £ cross at @ for any i with 1 < ¢ < 6 and they satisfy the conditions (Q3)—(Q5), which will
complete the proof of Lemma 11.

Lot i E}:UE("), forv=1,2,3,5,
Ej, for + = 4,6.

Note that {Ell, ce E?} are indeed a partition of E(G). We first check that this partition satisfies
the conditions (Q3)-(Q5).

Let e be an edge connecting u and V' (H ) —{u, v, w}. It follows from Claim 2 that e is contained
in T or placed on the right side of T'. If e is an edge in T or a chord of T', then e € E}; Otherwise,
e is contained in some non-trivial T-bridge B in B for some 2z € V(T'). It follows from Claim 3
(1) and the condition (Q3) for B that e € F} and hence by the definition, we have e € E}. In
either case, we have e € F', and hence the condition (Q3) is satisfied.

Let e be an edge connecting v and V(H)—{u, v, w}. It follows from Claim 2 that e is contained
in T or placed on the right side of T'. If e is an edge in T or a chord of T', then e € EZ; Otherwise,
e is contained in some non-trivial T-bridge B in B for some z € V(T'). It follows from Claim 3
(2) and the condition (Q5) for B that e € E%, and hence by the definition, we have e € Ff. In
either case, we have e € F?, and hence the condition (Q4) is satisfied.

Let e be an edge connecting w and V(H) — {u, v, w}. It follows from Claim 2 that e is placed
on the left side of T'. If e is a chord of T', then e € E3; Otherwise, e is contained in some non-trivial
T-bridge B in BL for some 2 € V(T). Tt follows from Claim 3 (3) and the condition (Q5) for B
that e € F%, and hence by the definition, we have e € E}. In either case, we have e € E?, and
hence the condition (Q5) is satisfied.

Therefore, it suffices to prove that no two edges in £ cross at Q for any 1 < i < 6. Let
i € {1,2,3,4,5,6} and let ayas,biby € E'. For i = 4 or 6, it follows from Claim 5 that the
edges ajay and b1by; do not cross at (). So, we may assume that ¢ = 1,2,3 or 5. By Claim 5,
and the symmetry between ajas and bbs, we may further assume that ajay, € EY and byby € Eé.
In particular, ajay is contained in some non-trivial T-bridge B in B. Since no vertices in T’
appear in Q(up,u};), where uj is the successor of up at T, we have by, by & V(Q(up, uf;)). So,
if {a1,a2} N{vp,wp} =0, then ay,ay € {up} U V(QB(uB,vB)) C V(Q[UB,UE)), and hence it
follows from Lemma 3 that ayas and b1by do not cross at (). Therefore, by the symmetry between
a; and ag, we may assume that as = vg or as = wpg. Since i = 1,2,3,5, it follows from the
conditions (Q3)—(Q5) for B and the definition of E}, ..., E? that a; # up and exactly one of the
following holds;

(i) i =2, ajay € B3 C E?, ay = wp and B € BE for some z € V(7).
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(ii) i = 3, ayas € B3 C E3, ay = wp and B € BL for some z € V(T).

Suppose first that the case (i) occurs. Then by the definition of E3 and the symmetry between
b1 and by, we may assume that b, = v. Note that both of the edges zwp and byv are contained in T’
or placed on the right side of T', and hence it follows from Lemma 2 that the edges zwg and byv do
not cross at 1. Therefore, the vertices z, wg, by, v appear in 7" in this order (possibly, wg = by) or
in the order by, z, wp, v (possibly, by = z and/or wp = v). Thus, it follows from the construction
of @ that z,Qp(z,vp), ws, b1, v appear in @ in this order or in the order by, z, Qp(z,vp), wa, v,
respectively. Since a; € V(QB(Z, vB)), as = wpg and by = v, we see that the edges a,as and byby
do not cross at ().

Suppose next that the case (ii) occurs. Then by the definition of E3 and the symmetry
between b; and by, we may assume that by = w. Note that both of the edges zwp and byw are
contained in T" or placed on the left side of T', and hence it follows from Lemma 2 that the edges
zwp and byw do not cross at T'. Therefore, the vertices z,wg, by, w appear in T in this order
(possibly, wg = by) or in the order by, z,wp,w (possibly, by = z and/or wg = v). Thus, it follows
from the construction of @ that z, Qp(z,vE), ws, by, w appear in @ in this order or in the order
b1, z,Qp(z,vp), ws, w, respectively. Since a; € V(QB(Z,UB)), as, = wp and by = w, we see that
the edges ayas and b1by do not cross at Q.

This completes the proof of Lemma 11. [

6.2 Proof of Theorem 1 (iii)

Let G be a graph on the projective plane. To find a book embedding of G, we may assume that
G is a triangulation. By Lemma 9, GG has a spanning disk triangulation H with outer cycle C'
satisfying the conditions (G1)-(G5).

By the condition (G2), H has a path from s to ¢ that passes through z and then y. Then it
follows from Theorem 5 that H has a C-Tutte path T from s to t that passes through x and then
y. By the symmetry, we may assume that the edges in Cls, z| are contained in T or placed on
the left side of T'. Thus, the edges in <5[y, t] are contained in T or placed on the right side of T.
Let E (resp., Er) be the sets of edges e in E(H[V(T)]) — E(T) such that e is placed on the left
side (resp., the right side) of T'. Note that E(H[V(T')]) = E(T) U EL U Eg.

Let B, = {B: B isanon-trivial T-bridge of H having exactly two attachments},
and B3z = {B: B isanon-trivial T-bridge of H having exactly three attachments}.

Since 1" is a C-Tutte path in H and H is 2-connected, every non-trivial T-bridge of H belongs to
B, or Bs. Therefore, all vertices not contained in 7" are contained in B for some B € By U Bg,
and any edge in H is either an edge connecting two vertices in T or contained in B for some
B € By, U Bjs. Thus,

BeBoUB3

Now we appropriately insert Qp(ug, vp) for all B € BoUB; into T' so that we obtain a suitable
sequence of V(G). To do that, we define the type of each B in By U B3, depending on which side
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(left or right) where it is placed on and the place of its attachments.

Let BY = {B € By,UB;s: B is placed on the left side of T'},
and Bf = {B € ByUB;s: B is placed on the right side of T'}.

Furthermore, let

B = {B e B :all the attachments of B are contained in T'[s, z]},
B2 = {B € B": B has at least two attachments on T[z, ]},
BL3 = {B € BY: B has at least two attachments on T'(y, t]},
B! = {B ¢ Bf :all the attachments of B are contained in T'[y, t]},
B2 = {B € B : B has at least two attachments on T'[x,y]},
and B™ = {B e B®: B has an attachment on T'[s,z) and at most one attachment on T'[x, y]}.

See Figure 11. Note that for any B € B, B contains an edge in C([s, z] if and only if B € BLY
B contains an edge in <a[s,y] if and only if B € B, and B contains an edge in C'[y, ] if and
only if B € B#L

We claim that {BX, B2 BL31 is a partition of BX. To see that, let B € BL. If all the
attachments of B are contained in T[s,z], then B € BM and B ¢ B2 U B3, Thus, we may
assume that B has an attachment on T'(x,t]. So, B ¢ B, It follows from the planarity of H
that B has no attachments on T'[s, z), and furthermore, B ¢ Bs, and hence B € Bj. Suppose
that B has at least two attachments on T'[z,y]. In this case, B € B2, Since B has at most three
attachments on 7', B has at most one attachment on T'(y,t], and hence B ¢ B3. Thus, we may
further assume that B has at most one attachment on T'[x,y]. In this case, B ¢ B2 Since B
has exactly three attachments on T', this implies that B has at least two attachments on T'(y, t],
and hence B € B3, Thus, the claim holds.

On the other hand, we also claim that {B#!, B2 B} is a partition of BR. Let B € B If
all the attachments of B are contained in T'[y,t], then B € B and B ¢ B U B™. Thus, we
may assume that B has an attachment on T'[s,y). So, B € B®L. Suppose that B has at least
two attachments on T'[z,y]. In this case, clearly B € B2 and B ¢ Bf®. Thus, we may further
assume that B has at most one attachment on T[z,y]. So, B ¢ B®. Since B has at least two
attachments on T', this implies that B has at least one attachment on T'[s, z), and hence B € B#.
Thus, the claim holds.

The claims above imply the following;

E(H) - E(H[V(T)]) = U E(B). (3)

BeBLIUBL2yBL3yUBRIUBRZUBR3

Let B € By, and let ug and vp be the two attachments of B on T such that s,ug,vp
appear in T in this order (possibly, s = ug). Since H is a disk triangulation, ugvg € E(H) but
upvp ¢ E(B), and B has to contain an edge in the outer cycle C. In particular, it follows from
the fact s, x,y,t € V(T) that B contains an edge in either C|[s, z], %[s, y| or <5[3;,75]. (Note that
since zt € F(C) and x,t € V(T'), there exists no non-trivial T-bridge of H containing an edge in
Clz,t].) Furthermore, B N C = Clug,vp] if B € B and otherwise, BN C = <a[uB,vB]. Now
we construct the graph B that is obtained from B by adding the edge ugvp and a new vertex,
say wpg, and joining wg to all vertices in B N C. Note that those added vertex and edges can
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Figure 11: The C-Tutte path T in H and the T-bridges of H in B, BL2 BL3 BRI BE2 and B3,

be naturally embedded on the outer region of B so that the three vertices ug,vp and wg form
the outer cycle. So, indeed B* is a plane triangulation with outer cycle ugpvgwg. Notice also
that B N C is contained in the outer cycle of B™ — wpg. Then it follows from Lemma 11 that
B* —{upvp, vpwg, wpup} has a 6-page book embedding (Qf, &5 ), where &4 = {E5", ..., ES™Y,
such that (Q1) ugp is the first vertex in QF, vp is the second last vertex, and wg is the last
vertex, (Q2) the vertices on BN C appear in @} in this order, (Q3) all edges connecting up and
V(B*) — {up,vp, wg} belong to E5", (Q4) all edges connecting vy and V(BT) — {up,vg, wp}
belong to E%", and (Q5) all edges connecting wp and V(BT) — {ug, vz, wp} belong to 4. Let
Qg be the sequence obtained from QF by deleting the last vertex wg, and let &g = {EL, ..., ES$},
where B = E4 for 1 <i < 6 with i # 3, and E, = E3" N E(B). Note that the pair (Qp, &p) is
a 6-page book embedding of B.

On the other hand, let B € B;. Then we define the three attachments ug, v and wg of B on
T as follows:

o If B e B UBR then let ug,vp and wp be the three attachments of B on T such that
s,up,vp,wp and t appear in T in this order (possibly, s = ug or wg =1t).
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Suppose that B € B2, Note that B has at least two attachments on T'[z,y]. If B has
exactly three attachments on 7'z, y], then let ug, vp and wp be the three attachments of B
on T such that s,x,up, v, wp,y and t appear in T in this order (possibly, = up and/or
wp = y); Otherwise, B has exactly one attachment on T'(y,t], say vg, and exactly two
attachments on T[z,y|, say ug and wg, where s, z,up,wg,y,vg and t appear in T in this
order (possibly, z = ug and/or wg = y and/or vg =t).

Suppose that B € BL3. Note that B has at least two attachments on T'(y, t]. If B has exactly
three attachments on T'(y, ], then let ug,vp and wg be the three attachments of B on T
such that s, x,y,up,vp, wp and ¢t appear in T in this order (possibly, wp = t); Otherwise,
B has exactly one attachment on T'[z,y], say vg, and B has exactly two attachments on
T(y,t], say up and wp, where s,z,vp,y, up, wp and t appear in 7" in this order (possibly,
x =wvg or vg =y and/or wg = t).

Suppose that B € B2, Note that B has at least two attachments on T'[x,y]. If B has
exactly three attachments on T'[z, y|, then let up,vp and wp be the three attachments of B
on T such that s, 2z, up, v, wg,y and t appear in T in this order (possibly x = ug and/or
wp = y); Otherwise, B has exactly one attachment on T'[s, ), say vg, and B has exactly
two attachments on T'[z,y], say up and wp, where s,vg, x,up, wp,y and t appear in 7" in
this order (possibly, s = vg and/or x = up and/or wp = y).

Suppose that B € B#. Since B has exactly three attachments on 7', B has at least two
attachments on 7T'[s,z) and at most one attachment on T[z,y]. If B has exactly three
attachments on T'[s,z), then let ug,vp and wp be the three attachments of B on T such
that s,up,vp, wp,z,y and t appear in T in this order (possibly s = ug); Otherwise, B has
exactly two attachments on T'[s, z), say ug and wg, and B has exactly one attachment on
Tlx,y], say vg, where s,up, wp,x,vg,y and ¢t appear in T in this order (possibly, s = up
and/or z = vp or vg = y).

Then see Table 1 for the places of the vertices ug,vp and wpg, depending on the types of
B. Note that since H is a disk triangulation, we see that ugvg,vpwp,wpup € FE(H) but
upvp, vpwp, wpup ¢ E(B).

Table 1: The possible places of the vertices up, vp and wg, depending on the types of B.

B e B! B e B2 B e Bl? B e B B e B2 B e B
ug,wp || T[s,x] Tx,y] T(y,t] Ty, Tx,y] T[s,x)
Up Tls,x] | T[z,y)UT(y,t] | T[x,y]UT(y,t] | Ty, t] | T[s,x)UT[x,y] | T[s,z) U T[z,y]

Note that B + {upvp,vpwp, wpup} is a plane triangulation. Then it follows from Lemma

11 that B has a 6-page book embedding (Qp, &), where &g

= {E}, ..

., E%} such that (Q1)

up is the first vertex in @p, vp is the second last vertex, and wp is the last vertex, (Q3) all
edges connecting ug and V(B) — {up,vp,wp} belong to Fg, (Q4) all edges connecting v and
V(B) — {up,vp,wp} belong to £%, and (Q5) all edges connecting wg and V(B) — {ug, v, wg}
belong to E%. (Since we do not use the condition (Q2) for B € Bj, we can ignore it.)
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For each z € V(T), define BE (resp., BE) as the set of T-bridges B in By U Bz such that
up = z and B is placed on the left (resp., right) side of T. Let By, ..., B, be the elements in BX
along the clockwise order around z, where p = |BL|. Similarly, let B,,1, ..., B, be the elements
in B2 along the clockwise order around z, where ¢ = p+ |B|. Then we have the following claim.

Claim 6 Let z € V(T), let BL = {By,...,B,}, and let Bf = {B,,4,..., B,} as above. Then
both of the following hold.

(I) The vertices z,vp,, Wp,,Vp,, - .., VB, Wp,,t appear in T in one of the following orders’:
(I-1) z,vB,, wB,, VB, 1, -, WB,, VB, (Wg,,) L.
(1_2) Z2,UB,, WB,, UB,_15---,WBy, WB, Y, UBUt'
(1'3) UB15%,UB,, WB,; UB,_15 -+, WBy; prt'
(II) The vertices z,vp,,,, WB,,,,VB,s;- - -, VB, WB,, appear appear in T in one of the following
orders®:
(II-1) 2,vB,,,, WB,, 1, VB, s, ---+VB,, (WB,,)t
(I1-2) vp,, ,2,VB,,,, WB,, 1, VB, s - - - » WB,_ 1, WB,, L.
(I1-3) 2,98, WBy 1, UByyos - - - s Wa—1, WB,, T, VB, , .

Proof. We prove (I) and (II) at the same time. Suppose first that z € V(T'[s,x)). Then all
non-trivial T-bridges B in BL belong to B!, and all non-trivial T-bridges B in B belong to
B3, (See Table 1.) It follows from the planarity that if 2 = up for some B € By, then B = B,
in the case when B € Bl and B = B, in the case when B € BE. Then the choice of ug,vp, wg
implies that the vertices z,vp,, (wg,,) VB,,.--,VB,,Wn,,t appear in T' in the order as in (I-1). On
the other hand, it follows from the planarity that if z = up for some B € B such that B has
an attachment on 7'(x,y|, then B = B, and vp € V(T(:c, y]) Therefore, the choice of up,vg, wp
implies that the vertices z,vp ,,, Wp,,,,VB, s --,VB,, (WB,,) t appear in T" in the order as in
(II-1) if B, has no attachment on T'(z,y]; Otherwise as in (II-3).

Suppose next that z € V(T'[z,y)). Then all non-trivial T-bridges B in B belong to B2,
and all non-trivial T-bridges B in BZ belong to Bf2. Note that no T-bridge B in B, satisfies
2z = upg. It follows from the planarity that if 2 = up for some B € B? such that B has an
attachment on T'(y, t], then B = B; and vp € V(T(y,t]). Then the choice of upg, v, wp implies
that the vertices z,vp,, wp,,vB,,...,vn,, ws,,t appear in T in the order as in (I-1) if B; has no
attachment on T'(y, t]; Otherwise as in (I-2). Similarly, if z = up for some B € B#? such that B
has an attachment on 7'[s, z), then B = By, and the vertices z,vp, ,,Wp,, 1, VB, 4 - - -+ VB, WB,,
appear in 7" in the order as in (II-1) or (II-2).

Suppose finally that z € V(T[y,t)). Then all non-trivial T-bridges B in B% belong to B3,
and all non-trivial T-bridges B in BZ belong to Bf!. If 2 = up for some B € B3 such that B
has an attachment on T'[z,y|, then B = By and vg € V(T[x,y]). Thus, the choice of ug,vg,wpg

®Possibly, wp, = vp, , and/or ---, and/or wp, = t. In (I-1), wp, does not exist when z € V(T[s,z)) and
By € By. Furthermore, (I-2) (resp., (I-3)) occurs only when z € V(T'[z,y)) (resp., only when z € V(T[y,1))).
6Possibly, wB,,, = VB,,, and/or ---, and/or wp, = t. In the first case, wp, does not exist when z €

V(T[s,z)) UV (T[y,t)) and B, € By. Furthermore, (II-2) (resp., (II-3)) occurs only when z € V(T[z,y)) (resp.,
only when z € V(T's, z))).
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implies that the vertices z,vp,,wp,,vB,,...,vs,, ws,,t appear in T in the order as in (I-1) or
(I-3). On the other hand, it follows from the planarity that if z = up for some B € B, then
B = B, and B € BE. Then the vertices Z,UB, 1y WByy1> UByyas - - s UBy, (WB,,) t appear in T in
the order as in (II-1).

This completes the proof of Claim 6. [

Now, we insert the sequence @p, (z,vp,) @B,(2,vB,) - -~ @B, (2,vB,) @B,(2,v8,) @B,_,(2,vB,_,)
-+ @QB,,,(2,vB,,,) just after z in T'. Therefore, we obtain the new sequence

Tls,2] Qp,(z,vB,) -+ Q,(2,vB,) @B,(2,vB,) -+ OB, (2,08,,,) T(2,1].

We do the above insertion for all z € V(T') independently, and let @) be the obtained sequence of
the vertices in G. It follows from the construction of () and the condition (Q2) for each B € B
that the following claim holds.

F
Claim 7 The vertices in Cls,z| Cly,t| appear in @ in this order.

Now we will partition all edges in GG into the six sets so that no two edges in a same set cross
at Q. To do that, we first partite all edges in |Jzep, 5, B into six sets Ef, ..., EY.

Let Bl = U Eyu lJ Ezu U ERUu U E
BeBL1ypL2 BeBL3 BeBR1 BeBR2UBR3

E? = U Eru |y ERu U EZU U ES,
BeBL1UBL2 BeBL3 BeBR1 BeBR2UBR3

E} = U rguvlU EBu lJ Ebu | E
BeBL1yBL2 BeBL3 BeBR1 BeBR2UBR3

4 4 4 1 1

- U muUmuUsu U B
BeBL1yBL2 BeBL3 BeBR1 BeBR2UBR3

5 __ 5 3 5 2

- U muUnuUBy U
BE$L1U3L2 BEBL?’ BE%RI BEBR2UBR3

6 _ 6 6 2 3

and  ES = U eiulJ EZu | ERU U EL
BeBL1yBL2 BeBL3 BeBR1 BeBR2yUBR3

Since &g = {E}, ..., E%} is a partition of E(B) for any B € B,UB3, we see that {E7, ..., ES}
is a partition of geg, s, E(B) = E(H)— E(H[V(T)]). (See (3).) For those sets Ef,..., Ef, we
show the following claim.

Claim 8 For any integer i with 1 < i < 6, any two edges in Ei do not cross at Q.

Proof. Let i € {1,2,3,4,5,6} and let ajas and b1by be two edges in Ef{. By the definition
of Ei, the edge ajas is contained in some non-trivial T-bridge B in By U Bs. If bib, € E(B),
then since the pair (Qp,&p) is a 6-page book embedding of B and ajag, bibs € E]é € &p for
some 1 < 7 < 6, we see that ajas and b1by do not cross at (), and hence at (). Thus, we
may assume that biby € FE(B), which implies that bjby € E(B’) for some B’ € By U B3 with
B’ # B. In particular, since the vertices in Qp(up,vp) appear in () consecutively, we have
bl, by € V(Q) — V(QB(UB,UB)). SO, if {al,ag} N {UB,’UB,UJB} = @, then ai,as € V(QB(UB,UB)),
and hence it follows from Lemma 3 that a;as and byby do not cross at (). Therefore, we may
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assume that {a1,as} N{up,vp,ws}t # (. By the symmetry between ajas and bby, we may also
assume that {by, b} N {up, v, wp} # 0.

Case 1. a; = ug or ap = ug or by = up’ or by = up .

Say a; = up by symmetry. It follows from the condition (Q3) for B that ajas € E§, and it
follows from the definitions of E}, ..., E¢ that ajay € Ef UE}. So,i =1 or 4, and bjby € E} U E}.
Since {b1,b2} N {up,vp,wp} # 0, it follows from the conditions (Q3)—(Q5) that by = up or
by = ups, say by = up by symmetry. If ug = upgs, then the edges ajas and b1by share up as the
end vertex, and hence they do not cross. Thus, we may assume that ug # ug. Then it follows
from the construction of @ that bi,by & V(Q[up,uf;)), where uf; is the successor of up at T.
Since a, as € V(Q[uB, ug)), it follows from Lemma 3 that a;as and bybs do not cross at (). This
completes the proof of Case 1.

Case 2. a1,as # up and by, by # up:.

Since {a1,a2} N {up,vp, wp} # 0, it follows from the symmetry between a; and as that we
may assume that as = vg or ap = wg. By the symmetry between ajas and b1by, we may also
assume that by = vp or by = wp. It follows from the conditions (Q4) and (Q5) for B and
B’ that ajay € E% U E3 and biby € E%, U E%,. In particular, we see that i # 1,4. Note that
a; € V(QB(UB,UB)) and b; € V(QB/(UB/,UB/>).

We claim that B and B’ are placed on the same side of T. For the contrary, suppose that
B and B’ are placed on the different side of T', which means either B € B* and B’ € B~, or
B € Bf and B’ € BY. By the symmetry between B and B’, we may assume the former occurs.
Since ajay € E% U E3, and biby € E%, U E3,, it follows from the definition of Ef, ..., EY that one
of the following hold.

(1) 1= 3, B e BLl, aias € E]gg, a9 = Wp, B’ S BRl, ble S E%/, and b2 = wpgr.
(11) 1= 3, B e ng, a1a9 € E%, a9 = Wp, B’ € BRl, blbg € E%/, and bg = wpgr.
(iii) i =5, B € B3 ayay € E3, ay = wp, B' € B2 U B bby € F%,, and by = vp'.

Suppose that the case (i) occurs. Then all the attachments of B are contained in T7[s, z].
and all the attachments of B’ are contained in T'[y, t]. It follows from the construction of @) that
a1, as € V(Q[s, z]) and by, by € V(Qy,t]), which imply that ajas and bibs do not cross at Q.

Suppose next that the case (ii) occurs. Since B € B2, we have ug,wp € V(T'|z,y]). (See
Table 1.) Therefore, it follows from the construction of @) that all vertices in Qglup,vp) U{wg}
appear in Q[x,y]. Since ajay € E3, it follows from the condition (Q4) for B that ai,as # v,
and hence aq, as € V(QB[UB,UB)) U{wpg}. Therefore, we have ay,ay € V(Q[x,y]). On the other
hand, since B’ € B! it is easy to see that by, by € V(Q[y,t]). These imply that ajas and bby
do not cross at Q.

Suppose finally that the case (iii) occurs. Since B € B3, we have up, wp € V(T[y,t]). (See
Table 1.) Therefore, it follows from the construction of @ that all vertices in Qglup,vp) U {wp}
appear in Qly,t]. Since ajay € E3%, it follows from the condition (Q4) for B that ay,ay # vp,
and hence a;,ay € V(QB[uB,vB)) U {wp}. Therefore, we have a1, ay € V(Q[y,t]). On the other
hand, since B’ € BF? U BF3, it is easy to see that by, by € V(Q[s, y]) These imply that a;as and
b1bs do not cross at (), and hence the claim holds.
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Therefore, we may assume that B and B’ are placed on the same side of T, that is, either
B,B' € BY or B, B’ € BE. Suppose that ug # up. Since the edges upas and up by are placed
on the same side of 7' (both on the left side or the right side), it follows from Lemma 2 that upgas
and upbs do not cross at 7. Recall that a; € V(QB(uB,vB)) and hence a; € V(Q(uB,ujg)),
where u; is the successor of up at T'. Similarly, by € V(Q(up:, u},)), where uj, is the successor of
up at T. Furthermore, we have as, by, by & V(Q(uB,uE)) and ay,as, by & V(Q(UB/,UE,)). These
imply that the edges ajas and biby do not cross at @), neither.

Thus, the case up = up only remains. Suppose that B, B’ € BY. By the symmetry be-
tween ajay and biby, we may assume that B = B; and B’ = B; with 1 < ¢ < j < p, where
BL = {Bl, ce Bp}. It follows from Claim 6 (I) that the vertices z,as, by appear in T in the
order z, by, as unless the case (I-3) occurs and vg, = as. Note that in the exceptional case,
they appear in T in the order as, z,by. This, together with the construction of ), implies that
2,Qp,(2,vB,), @B,;(2,UB,), b2, az appear in () in this order, or in the order a, z, @p, (2, vp,), @B, (2, vs,), ba.
Note that a; € V(QBi(z,vBi)) and b; € V(QB].<Z,?}B].)). Therefore, the edges ajas and biby do
not cross at Q).

Suppose next that B, B’ € Bf. By the symmetry between a;ay and by by, we may assume that
B = B;and B’ = B; with p+1 <i < j < ¢, where Bff = {Bp+1, . ,Bq}. It follows from Claim 6
(II) that the vertices z, az, by appear in T in this order, unless the case (II-2) occurs and vp, = bs.
Note that in the exceptional case, they appear in 7" in the order bs, z, as. This, together with the
construction of @, implies that 2z, @, (z,vp,), @B, (2, vs,), az, by appear in () in this order or in the
order by, z,Qp,(2,vB,), @B, (2,vp,), az. Note that b; € V(QBJ.(Z,UBJ.)) and a; € V(QBi(z,vBi)).
Therefore, the edges ayas and b1by do not cross at Q).

This completes the proof of Claim 8. [

Now we partition all edges in G into six sets Et, ..., ES as follows;

Let E' = EiUE(T)UE;,
B = B,
E' = E}U(BE(G) - E(H) - E,),
E* = FE}UER,
B =
and E* = EVUE,.

Recall that E(H[V(T)]) = E(T)UEL U Eg. Then it follows from the definition of £}, ..., EY and
equality (3) that {E*, ..., ES} is indeed a partition of F(G). We will show that no two edges in E’
cross at @ for any 1 < i < 6, which will complete the proof of Theorem 1 (iii). Let ajas, bibs € E".
For i = 2 or 5, it follows from Claim 8 that the edges aias and b1b, do not cross at ). So, we
may assume that ¢ = 1,3,4 or 6. Recall that all edges in E, share = as an end vertex. Thus,
by the condition (G3), Lemma 2, Claims 7 and 8, and the symmetry between ajas and byby, we
may further assume that ajay € Ei and biby € E' — Ei. In particular, ajas is contained in some
T—bridge B in BQ U Bg.

Case 1. i = 1.
In this case, ajay € FE{ and biby € E(T) U Er. It follows from the definition of E} that
a1az € E} U E}. By the conditions (Q3)—(Q5) for B, we see that ai,as € V(Qplup,vp)). Note
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that Qplug,vp) is contained in Q[UB,UE), where ujg is the successor of ug at T, and hence

ai,as € V(Q[UB, u})) On the other hand, since by, by € V(T)), it follows from the construction
of @ that by,by & V(Q(uB, ujg)) Then it follows from Lemma 3 that a;as and b1bs do not cross
at @), and complete the proof of Case 1.

Case 2. i = 3.
In this case, ajay € E? and byby € E(G) — E(H) — E,. Tt follows from the condition (G3) and
the symmetry between by and by that we may assume that by € V(C[s, z]) and by € V(Cy,t]).

Case 2.1. B € Bt U BHL,

By the definition of E?, we have ajay € E%. Then, it follows from the conditions (Q3) and
(Q4) that {ay,as} N {up,vg} = 0. Now we only prove the case where B € B! but the case
where B € B! can be shown by the same way. (In fact, exchanging the role of b; and by and the
role of C[s, z] and <5[y, t], we obtain a proof of the case where B € BfL))

Let u and v be two vertices in T[s, ] N C|[s, x] such that up is contained in T'[u,v). (Note
that s and z satisfy the conditions of u and v, respectively, and hence those vertices indeed
exist.) Taking such vertices u and v so that Cfu,v) is as short as possible, we may assume
that no vertices in Cf[s,x] are contained in T'(u,v). By this choice and the planarity, we see
that u,up,vp, (wp,) v,z appear in T' in this order (possibly, wg does not exist, and/or u = up,
and/or wg = v, and/or v = z). If by & V(C’(u,v)), then we have ay,ay € V(Q[u,v]) and
by, by ¢ V(Q(u, v)) Then it follows from Lemma 3 that the edges ayas and bibs do not cross at
. Thus, we may assume that b; € V(C’ (u, v)), and hence there exists a non-trivial T-bridge B’
in By N BL with by € V(B') — {up/,vp }. Tt follows from the construction of @ that B’ = B; and

Q[U, b1] = @Qp [U, b1]7

where BL = {By,...,B,}. In particular, all vertices in B’ appear in Q[u,u"), where u™ is the
successor of u at T. So, if u # up, then we have ay,ay € V(Q[u+,v]) and by, by ¢ V(Q(u*,v)).
Then again, it follows from Lemma 3 that the edges ajas and bybs do not cross at Q.

Therefore, we may assume that v = up, and hence B € BE. Let B = B; for some j with
1 <j<p Ifj+#1, then aj,as € V(Q[u,bi]), and hence it follows from Lemma 3 that the
edges aias and b1by do not cross at (). Therefore, we may assume that 7 = 1, which means that
ai,as,by € V(B). Recall that ajay € E%. Then it follows from the conditions (Q3) and (Q4)
that ay, ag, by # up,vp, {a1,a2,01} N {up, v} # 0, and hence ay, as, by € V(QB(uB,UB)). Since
( E, é’g) is a 6-page book embedding of BT, we see that the edges ajay and bywp do not cross
at QE Therefore, it follows from the symmetry between a; and a, that a,as, by, wp appear in
Q} in this order or in the order by, ay, as, wp. Since Qp(u, vg) is a subsequence of (), we see that
ai, as, by, by appear in @) in this order or in the order by, aq,as, by, respectively. Therefore, the
edges aias and b1by do not cross at (), and this completes the proof of Case 2.1. [

Case 2.2. B € B2y BL3 U B2y B,

In this case, we see that B — {up,vp,wp} contains neither b; nor bs. This implies that
bi,by & V(QB(UB,UB)). So, if {a1,as} N {up,vp,wg} = 0, then ai,as € V(QB(UB,UB)), and
hence it follows from Lemma 3 that the edges ajas and biby do not cross at (). (Recall that
the vertices in Qp(up,vp) are contained in ) consecutively.) Therefore, we may assume that
{a1,a2}N{up,vp,wp} # (). By the symmetry between a; and as, we may also assume that a; = up
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or ay = vg or ag = wg. It follows from the conditions (Q3)-(Q5) that ajay € EL U E% U E3,.
Thus, by the definition of E?, we see that B € B, ajay € E%, and ay = wg. By the definition
of up and wg for B € BL?, we have up,wp € V(T'[x,y]). (See Table 1.) Since by € V(C[s, z])

and by € V(E[y, t]), it follows from Claim 7 that by, ug, wg, by appear in @ in this order. Then it
follows from the construction of @ that by, up, @p(up, vg), ws, by appear in @ in this order. Since
a; € V(QB(uB,vB)) and a, = wp, we see that the edges ajas and biby do not cross at ). This
completes the proof of Case 2. [

Case 3. 1 = 4.

We can show this case by the same way as Case 1. In fact, we have aias € Ef and b1by € Eg.
It follows from the definition of E} that ajay € EL U E4. By the conditions (Q3)—(Q5) for B, we
see that a1, as € V(QB[uB, UB)). Note that Qglup, vg) is contained in Qup, u}), where u} is the
successor of ug at T, and hence aq,ay € V(Q[uB, ujg)) On the other hand, since by, by € V(T),
it follows from the construction of () that by, by & V(Q(uB, ujg)) Then it follows from Lemma 3
that a;as and byby do not cross at (), and this completes the proof of Case 3. [

Case 4. 1 = 6.

In this case, ajay € EY and b1by € E,. It follows gom the condition (G3) and the symmetry
between b; and by that we may assume that b, € V(C’ (s, y)) and by = x. Note that the vertices
s,by, x and y appear in () in this order.

Case 4.1. B € Bt Uy B2y BL3 U BEL U BE2

In this case, we see that B — {up,vp,wp} contains neither b; nor by. This implies that
by, by & V(QB(uB,vB)). So, if {ay,a2} N {up,vp,wg} = 0, then ai,as € V(QB(UB,UB)), and
hence it follows from Lemma 3 that the edges ajas and biby do not cross at Q. (Recall that
the vertices in Qp(up,vp) are contained in ) consecutively.) Therefore, we may assume that
{a1, a2} {up,vp,wp} # (). By the symmetry between a; and as, we may also assume that a; = up
or as = vg or as = wg. It follows from the conditions (Q3)-(Q5) that ajay € EL U E%3 U E%. By
the definition of EY, we see that either (I) B € B®! ajay € E%, and ay = vp, or (II) B € B2,
ajas € E%, and ay = wpg.

Suppose first that the case (I) occurs. Then by the definition of up and v for B € B we
have up,vg € V(T[y,t]). (See Table 1.) Since by € V(g[s,y)) and by = z, it follows from the
planarity that by, by, up, vg appear in @) in this order. Then it follows from the construction of @)
that by, be, up, @p(up,vp),vs appear in @ in this order. Since a; € V(QB(uB, vB)) and ay = vp,
the edges ayas and b1by do not cross at Q).

Suppose next that the case (II) occurs. Then by the definition of ug and wp for B € B2 we
have up,wp € V(T[z,y]). (See Table 1.) Since by € V(%[s,y)) and by = z, it follows from the
planarity that by, by, up and wp appear in @ in this order (possibly by = = up). Then it follows
from the construction of @ that by, bs, up, @p(up,vp) and wp appear in @ in this order. Since
a, € V(QB(U,B, vB)), we see that the edges ajas and b1by do not cross at (). This completes the
proof of Case 4.1. [

Case 4.2. B € B,
By the definition of E?, we have ajay, € E%. Then, it follows from the conditions (Q3) and
(Q4) that {a1, a2} N {up,vp} = 0. Therefore, ai,a € V(T'[s,z)). (See Table 1.)
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Let u and v be two vertices in T'[s, y] N <(7[3,3/] such that up is contained in T'u,v). (Note
that s and y satisfy the conditions of u and v, respectively, and hence those vertices indeed
exist.) Taking such vertices u and v so that C[u,v) is as short as possible, we may assume
that no vertices in C'[s,y| are contained in 7'(u,v). By this choice and the planarity, we see
that w,up, (wp,) = appear in T in this order (possibly, wp does not exist, and/or u = ug,
and/or v = x). If by & V(g(u,v)), then we have aj,as € V(Q[u,v]) and by, by & V(Q(u,v)).
Then it follows from Lemma 3 that the edges ajas and b;by do not cross at ). Thus, we may
assume that b; € V(C (u, v)), and hence there exists a non-trivial T-bridge B’ in B, N BE with
by € V(B') — {up,vp }. It follows from the construction of ) that B’ = B, and

Qlu,b1] = Qp,[u,vp,) @p,(u,vp,) ... Qp,(u,vp,) Qp,(u,bi],

where BE = {By,...,B,} and Bf = {B,,4,..., B,}. In particular, all vertices in B’ appear in
Qlu,u™), where u™ is the successor of u at T. So, if u # up, then we have a;,a; € V(Q[uT,v])
and by, by ¢ V(Q(u*,v)). Then it follows from Lemma 3 that the edges ajas and b1by do not
cross at @.

Therefore, we may assume that v = up. Let B = B; for some j with p +1 < j < ¢q. If
j # q, then we see that ay,as ¢ V(Q[u,bl]), and hence the edges ajay and b1by do not cross
at ). Therefore, we may assume that j = ¢, which means that a;,as,b; € V(B). Recall that
aias € E%. Then it follows from the conditions (Q3) and (Q4) that ai, as, by # up,vp, and hence
ay,as, by € V(QB(UB, UB)). Since (QF%, &5 ) is a 6-page book embedding of BT, we see that the
edges aias and bywpg do not cross at QJES. Therefore, it follows from the symmetry between a; and
as that ay, ag, by, wp appear in QF in this order or in the order by, a1, az, wp. Since Qp(u,vp) is
a subsequence of (), we see that the edges ajas and biby do not cross at (), This completes the
proof of Case 4.2, and the proof of Theorem 1 (iii). O
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