A shorter proof of Thomassen's theorem on Tutte paths in plane graphs

Kenta Ozeki*
National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
and
JST, ERATO, Kawarabayashi Large Graph Project
e-mail: ozeki@nii.ac.jp

Abstract

A graph is said to be Hamiltonian-connected if there exists a Hamiltonian path between any given pair of distinct vertices. In 1983, Thomassen proved that every 4 -connected plane graph is Hamiltonian-connected, using the concept of Tutte subgraph. In this paper, we give a new proof to Thomassen's theorem.

1 Introduction

In 1956, Tutte [9] proved that every 4-connected plane graph contains a Hamiltonian cycle. Extending the technique of Tutte, Thomassen [8] proved that every 4-connected plane graph is Hamiltonian-connected, i.e. there is a Hamiltonian path between any given pair of distinct vertices. For the proof of these two results, they considered a stronger concept, called a Tutte subgraph.

Let T be a subgraph of a graph G. A T-bridge of G is either (i) an edge of $G-E(T)$ with both end vertices on T or (ii) a subgraph of G induced by the edges in a component of $G-V(T)$ and all edges from that component to T. A T-bridge with the former type is said to be trivial, while the latter is non-trivial. For a T-bridge B of G, the vertices in $B \cap T$ are the attachments of B (on T). We say that T is a Tutte subgraph in G if every T-bridge of G has at most three attachments on T. For another subgraph C of G, the subgraph T is a C-Tutte subgraph in G if T is a Tutte subgraph in G and every T-bridge of G containing an edge of C has at most two attachments on T. A Tutte path (respectively, a Tutte cycle) in a graph is a path (respectively, a cycle) which is a Tutte

[^0]subgraph. For a connected plane graph G, the boundary walk of the outer face is called the outer walk of G. Furthermore, if it is a cycle, then it is the outer cycle of G.

Thomassen [8] proved the following result. (Although Thomassen's proof in [8] contained a small omission, it was corrected by Chiba and Nishizeki [1].)

Theorem 1 (Thomassen [8]) Let G be a 2-connected plane graph, let C be the outer cycle of G, let $x \in V(C)$, let $y \in V(G)-\{x\}$, and let $e \in E(C)$. Then G has a C-Tutte path from x to y through e.

It is easy to see that Theorem 1 implies the result stating that every 4 -connected plane graph is Hamiltonian-connected. In fact, for a given pair of distinct vertices x and y in a given 4-connected plane graph G, we first specify a facial cycle C incident with x and an edge e in C. Actually, we can specify the edge e (and the cycle C) so that neither x nor y is an end vertex of e. Then we consider the graph G so that C is the outer cycle, and it follows from Theorem 1 that G has a C-Tutte path T from x to y through e. By the choice of the edge e, we have $|T| \geq 4$. If there exists a non-trivial T-bridge B of G, then the attachments of B form a cut set of order at most 3 that separates $T-(B \cap T)$ from $B-(B \cap T)$, which contradicts that G is 4 -connected. Therefore, there exists no non-trivial T-bridge of G, which means that T is a Hamiltonian path. This shows that G is Hamiltonian-connected, and we are done.

Note that in several papers, finding Tutte subgraphs is a crucial method to show Hamiltonicity or other related properties of graphs on surfaces. See for example, $[2,3,4$, $5,6,7,10]$. The purpose of this note is to give a simpler proof to Theorem 1. Indeed, we show the following statement.

Theorem 2 Let G be a connected plane graph and let C be the outer walk of G. Then both of the following hold:
(I) Let $x \in V(C), y \in V(G)-\{x\}$ and $e \in E(C)$. If G has a path from x to y through e, then G has a C-Tutte path from x to y through e.
(II) Let $x, y \in V(C)$ with $x \neq y$, and $S \subset V(C)-\{x, y\}$ with $|S| \leq 2$.
(a) Suppose that $|S|=1$ and C has a subpath Q_{1} from z to y with $x \in V\left(Q_{1}\right)$, where $\{z\}=S$. Then G has a path T from x to y such that $V(T) \cap S=\emptyset$ and $T \cup S$ is a Q_{1}-Tutte subgraph in G.
(b) Suppose that $|S|=2$ and C has a subpath Q_{2} from x to y with $V\left(Q_{2}\right) \cap S=\emptyset$. Then G has a path T from x to y such that $V(T) \cap S=\emptyset$ and $T \cup S$ is a Q_{2}-Tutte subgraph in G.

Note that statement (I) implies Theorem 1 as an immediate corollary and statement (II-b) is exactly Theorem (2.4) in [5]. Our new ideas to prove Theorem 2 (I) are the following;

- Not assuming 2-connectedness.

Since Theorem 1 deals with 2-connected graphs only, in order to use the induction hypothesis, we have to use some tricks to make reduced graphs 2-connected. In fact, the proof in [8] first consider 2-cuts with certain conditions, and reduce a given graph, if such a 2 -cut exists, with several cases depending on the properties of the 2 -cut. On the other hand, since we only assume the connectedness in Theorem 2 , we do not need to consider the step. Instead, we have to consider whether there exists a cut vertex (see Claim 1), but the proof of it is much easier than to deal with 2-cuts with certain conditions.

- A shorter proof to statement (II).

In order to show statement (I), we need a statement like (II). Thomassen [8] (and other researchers, for example in $[1,5]$) has considered a block decomposition to show statement (II), together with the induction hypothesis for statement (I). In this paper, we actually give a shorter proof to statement (II), directly using the induction hypothesis for statement (I). Because of that, we could reduce the length of the proof.

Notice also that statement (I) guarantees the existence of a C-Tutte path connecting two given vertices through a given edge, which easily implies the existence of a C-Tutte path connecting two given vertices through a given vertex. In Section 2, we will often use the latter statement when we consider the induction hypothesis.

Let P be a path or a cycle with fixed direction. For two vertices x and y in $P, P[x, y]$ denotes the subpath of P from x to y (along the direction).

2 Proof of Theorem 2

We prove Theorem 2 by using simultaneous induction on the order of G. Actually, we will show the following two statements.
(i) Theorem 2 (I) holds for a graph G if both Theorems 2 (I) and (II) hold for all graphs G^{\prime} with $\left|G^{\prime}\right|<|G|$.
(ii) Theorem 2 (II) holds for a graph G if Theorem 2 (I) holds for all graphs G^{\prime} with $\left|G^{\prime}\right| \leq|G|$.

Note that both Theorems 2 (I) and (II) clearly hold for all graphs of order at most 3. Hence proving the above two statements completes the proof of Theorem 2.
Proof of statement (i).
Let G be a plane graph, let C be the outer walk of G, let $x \in V(C)$, let $y \in V(G)-\{x\}$, and let $e \in E(C)$. Suppose that G has a path from x to y through e. We first show the following claim.

Claim 1 If G has a cut vertex, then G has a C-Tutte path from x to y through e.
Proof. Suppose contrary that G has a cut vertex v. Let G_{1}^{\prime} be a component of $G-v$ with $V\left(G_{1}^{\prime}\right) \cap V(C) \neq \emptyset$, let G_{1} be the subgraph of G induced by $V\left(G_{1}^{\prime}\right) \cup\{v\}$, and let $G_{2}=G-V\left(G_{1}^{\prime}\right)$. Note that $\left|G_{1}\right|,\left|G_{2}\right|<|G|$. If $V\left(G_{2}-v\right) \cap V(C) \neq \emptyset$, then we can use the symmetry between G_{1} and G_{2}, and hence by symmetry, we may assume that $x \in V\left(G_{1}\right)$; Otherwise, that is, if $V\left(G_{2}-v\right) \cap V(C)=\emptyset$, then $x \in V\left(G_{1}\right)$ since $x \in V(C)$. In either case, we have $x \in V\left(G_{1}\right)$. Let C_{1} be the restriction of C into G_{1}.

Assume that y is also contained in G_{1}. Since G has a path from x to y through e, the edge e is also contained in G_{1} and G_{1} has a path from x to y through e. Since we assumed that Theorem 2 (I) holds for all graphs G^{\prime} with $\left|G^{\prime}\right|<|G|, G_{1}$ has a C_{1}-Tutte path T from x to y through e. Then we can easily see that T is a C-Tutte path in G from x to y through e, and we are done.

Hence we may assume that y is contained in $G_{2}-v$. Let C_{2} be the restriction of C into G_{2}. Here we assume that e is contained in G_{1}, but we can show the other case (when e is contained in G_{2}) by the almost same arguments. Since G has a path from x to y through e, G_{1} has a path from x to v through e and G_{2} has a path from v to y. Since we assumed that Theorem 2 (I) holds for all graphs G^{\prime} with $\left|G^{\prime}\right|<|G|, G_{1}$ has a C_{1}-Tutte path T_{1} from x to v through e and G_{2} has a C_{2}-Tutte path T_{2} from v to y. Then letting $T=T_{1} \cup T_{2}$, we see that T is a C-Tutte path in G from x to y through e, and we are done. This completes the proof of Claim 1.

Throughout the rest of the proof of statement (i), it follows from Claim 1 that we may assume that G is 2 -connected. Thus, C is a cycle. We fix the direction of C in the clockwise order.

Let $e=u_{1} u_{2}$. If $\{x, y\}=\left\{u_{1}, u_{2}\right\}$, then the edge $x y$ itself is a C-Tutte path in G, and we are done. Thus, we may assume that $\{x, y\} \neq\left\{u_{1}, u_{2}\right\}$. This and symmetry imply that $y \neq u_{1}, u_{2}$, since otherwise, we can change the roles of x and y. Furthermore, it follows from the symmetry between u_{1} and u_{2} that we may assume that G has a path from x to y through u_{1} and then u_{2}. Then the subpath $C\left[x, u_{1}\right]$ of C, which is directed in the clockwise order, satisfies that $G-V\left(C\left[x, u_{1}\right]\right)$ has a path from u_{2} to y.

Let H be the component of $G-V\left(C\left[x, u_{1}\right]\right)$ containing u_{2} and y, and let C_{H} be the outer walk of H. Take a vertex w in $V\left(C_{H}\right) \cap V(C)$ so that there exists a path in H from u_{2} to y through w, and w is as close to x on $C\left[u_{2}, x\right]$ as possible under the condition. Since u_{2} can play the role of w except for the last condition, such a vertex w exists. Since we assumed that Theorem 2 (I) holds for all graphs G^{\prime} with $\left|G^{\prime}\right|<|G|, H$ has a C_{H}-Tutte path T_{H} from u_{2} to y through w. See Figure 1.

We claim that we can take such a path T_{H} so that $\left|T_{H}\right| \geq 3$, unless u_{2} and y are connected by an edge that is a cut-edge of H. Suppose that $\left|T_{H}\right| \leq 2$. Since $y \neq u_{2}$, we have $\left|T_{H}\right|=2, T_{H}$ consists of only u_{2} and y, and $w=u_{2}$ or $w=y$. If there exists a vertex w^{\prime} such that $w^{\prime} \neq u_{2}, y$ and H has a path from u_{2} to y through w^{\prime}, then instead of the path T_{H}, we can take a C_{H}-Tutte path T_{H}^{\prime} from u_{2} to y through w^{\prime}. Note that T_{H}^{\prime} has the properties same as T_{H} together with the condition $\left|T_{H}^{\prime}\right| \geq 3$, and the claim holds.

Figure 1: The C_{H}-Tutte path T_{H} and non-trivial $\left(C\left[x, u_{1}\right] \cup T_{H}\right)$-bridges of G. (The outer rectangle represents the outer cycle C of G. The regions with falling diagonals stroke from top left to bottom right represent non-trivial $\left(C\left[x, u_{1}\right] \cup T_{H}\right)$-bridges of G having an attachment on $C\left[x, u_{1}\right]$. The regions bounded by dotted curves are graphs B^{*} for $B \in \widetilde{\mathscr{B}}_{2}$.)

Therefore, there does not exist such a vertex w^{\prime}. We can easily see that these properties imply that u_{2} and y are connected by an edge that is a cut-edge of H. Then the claim holds.

Let \mathscr{B}_{1} (and resp. \mathscr{B}_{2}) be the set of non-trivial $\left(C\left[x, u_{1}\right] \cup T_{H}\right)$-bridges B of G such that B has exactly one (resp. at least two) attachments on $C\left[x, u_{1}\right]$. For any $B \in \mathscr{B}_{2}$, let x_{B} and y_{B} be the attachments of B on $C\left[x, u_{1}\right]$ such that x_{B} is as close to x on $C\left[x, u_{1}\right]$ as possible and y_{B} is as close to u_{1} on $C\left[x, u_{1}\right]$ as possible. Note that $x_{B} \neq y_{B}$ and $C\left[x_{B}, y_{B}\right]$ is contained in $C\left[x, u_{1}\right]$ for any $B \in \mathscr{B}_{2}$. For $B, B^{\prime} \in \mathscr{B}_{2}$, we write $B^{\prime} \preceq B$ if either (i) $B=B^{\prime}$, or (ii) B^{\prime} is contained in the disk bounded by $Q \cup C\left[x_{B}, y_{B}\right]$, where Q is a path in B connecting x_{B} and y_{B}. Since G is a plane graph and $C\left[x, u_{1}\right]$ is a subpath of the outer cycle C of G, the binary relation \preceq is a partial order on \mathscr{B}_{2}. Let \widetilde{B}_{2} be the set of maximal elements of \mathscr{B}_{2} with respect to the partial order \preceq. By the planarity, we have the following claim.

Claim 2 For any $B, B^{\prime} \in \widetilde{\mathscr{B}}_{2}$ with $B \neq B^{\prime}, C\left[x_{B}, y_{B}\right]$ and $C\left[x_{B^{\prime}}, y_{B^{\prime}}\right]$ are edge-disjoint.
For $B \in \mathscr{B}_{1} \cup \widetilde{B}_{2}$, let $S_{B}=V(B) \cap V\left(T_{H}\right)$. If $B \in \mathscr{B}_{1}$, then let $B^{*}=B$, and if $B \in \widetilde{\mathscr{B}}_{2}$, then let B^{*} be the subgraph of G induced by the union of all elements $B^{\prime} \in \widetilde{\mathscr{B}}_{2}$ such that $B^{\prime} \preceq B$, together with $C\left[x_{B}, y_{B}\right]$. Let C_{B} be the outer walk of B^{*}. Note that if $B \in \widetilde{\mathscr{B}}_{2}$, then $C\left[x_{B}, y_{B}\right]$ is a subpath of C_{B} with $V\left(C\left[x_{B}, y_{B}\right]\right) \cap S_{B}=\emptyset$. We need the following claim.

Claim 3 For any $B \in \mathscr{B}_{1} \cup \widetilde{B}_{2}$, we have $\left|S_{B}\right| \leq 2$. Furthermore, if B^{*} contains an edge of $C\left[u_{2}, x\right]-\{x\}$, then $\left|S_{B}\right| \leq 1$

Proof. Let $B \in \mathscr{B}_{1} \cup \widetilde{\mathscr{B}}_{2}$. If $S_{B}=\emptyset$, then the claim holds. Hence suppose that $S_{B} \neq \emptyset$. Since B has an attachment on $C\left[x, u_{1}\right], B-V\left(C\left[x, u_{1}\right]\right)$ is a T_{H}-bridge of H containing an edge of C_{H}. Since T_{H} is a C_{H}-Tutte path in H, we have $\left|S_{B}\right| \leq 2$. So, the first statement holds.

Suppose that B^{*} contains an edge of $C\left[u_{2}, x\right]-\{x\}$ and $\left|S_{B}\right|=2$ for some $B \in \mathscr{B}_{1} \cup \widetilde{\mathscr{B}}_{2}$. Since B has an attachment on $C\left[x, u_{1}\right]$ and B^{*} contains an edge of $C\left[u_{2}, x\right]-\{x\}$, it follows from the definition of B^{*} that B contains an edge of $C[w, x]-\{x\}$. Let $\left\{z_{1}, z_{2}\right\}=S_{B}$, and by symmetry, we may assume that T_{H} passes through z_{1} first and then z_{2}. Since B is a $\left(C\left[x, u_{1}\right] \cup T_{H}\right)$-bridge, $B-V\left(C\left[x, u_{1}\right]\right)$ is connected, and hence there exists a path a contradiction. Thus, there exists a path Q in $B-V\left(C\left[x, u_{1}\right]\right)$ from z_{1} to z_{2} through a vertex w^{\prime} for some $w^{\prime} \in\left(V(B)-\left\{x, z_{1}, z_{2}\right\}\right) \cap V\left(C\left[u_{2}, x\right]\right)$.

Since $w \in V\left(T_{H}\right)$, it follows from the choice of w^{\prime} that $w^{\prime} \in V(C[w, x])-\{w, x\}$. Then connecting $T_{H}\left[u_{2}, z_{1}\right], Q$ and $T_{H}\left[z_{2}, y\right]$, we can find a path in H from u_{2} to y through w^{\prime}, which contradicts the choice of w.

Let $B \in \widetilde{\mathscr{B}}_{2}$. If $\left|T_{H}\right| \geq 3$, then $V\left(T_{H}\right)-S_{B} \neq \emptyset$ since $\left|S_{B}\right| \leq 2$ by Claim 3. Suppose that $\left|T_{H}\right|=2$. In this case, u_{2} and y are connected by an edge that is a cut-edge of H. This implies that at least one of u_{2} and y is not an attachment of B^{*}, and hence $\left|S_{B}\right| \leq 1$. In either case, $V\left(T_{H}\right)-S_{B} \neq \emptyset$. Since $V\left(T_{H}\right)-S_{B} \subset V(G)-V\left(B^{*}\right)$, we obtain $\left|B^{*}\right|<|G|$. Since we assumed that Theorems 2 (I) and (II) hold for all graphs G^{\prime} with $\left|G^{\prime}\right|<|G|, B^{*}$ has a path T_{B} from x_{B} to y_{B} with $V\left(T_{B}\right) \cap S_{B}=\emptyset$ such that $T_{B} \cup S_{B}$ is a C_{B}-Tutte subgraph in B^{*} if $S_{B}=\emptyset$ (by Theorem (I)), or such that $T_{B} \cup S_{B}$ is a Q_{B}-Tutte subgraph in B^{*} if $\left|S_{B}\right|=1$, where Q_{B} is a subpath of C_{B} from z_{B} to y_{B} with $x_{B} \in V\left(Q_{B}\right)$ and $\left\{z_{B}\right\}=S_{B}$ (by Theorem (II-a)), or such that $T_{B} \cup S_{B}$ is a $C\left[x_{B}, y_{B}\right]$ Tutte subgraph in B^{*} if $\left|S_{B}\right|=2$ (by Theorem (II-b)). Note that when $\left|S_{B}\right|=1$, then $E\left(C\left[x_{B}, y_{B}\right]\right) \subset E\left(C_{B}\left[z_{B}, y_{B}\right]\right)$ and $x_{B} \in V\left(C_{B}\left[z_{B}, y_{B}\right]\right)$. In particular, in either case, $T_{B} \cup S_{B}$ is a $C\left[x_{B}, y_{B}\right]$-Tutte subgraph in B^{*}.

Let

$$
T=\left(C\left[x, u_{1}\right]-\bigcup_{B \in \widetilde{\mathscr{F}}_{2}} C\left[x_{B}, y_{B}\right]\right) \cup \bigcup_{B \in \widetilde{\mathscr{B}}_{2}} T_{B} \cup\left\{u_{1} u_{2}\right\} \cup T_{H} .
$$

See Figure 2. By Claim 2, T is a path in G from x to y through e. We will show that T is a C-Tutte path in G.

Let D be a non-trivial T-bridge of G. Note that either (i) D is a non-trivial $\left(T_{B} \cup S_{B}\right)$ bridge of B^{*} for some $B \in \widetilde{\mathscr{B}}_{2}$, or (ii) D is a non-trivial $\left(C\left[x, u_{1}\right] \cup T_{H}\right)$-bridge of G having at most one attachment on $C\left[x, u_{1}\right]$.

Suppose first that D satisfies (i). Since $T_{B} \cup S_{B}$ is a $C\left[x_{B}, y_{B}\right]$-Tutte subgraph in B^{*}, D has at most three attachments, and at most two attachments if D contains an edge in $C\left[x_{B}, y_{B}\right]$. Hence if $E(C) \cap E\left(B^{*}\right) \subseteq E\left(C\left[x_{B}, y_{B}\right]\right)$, then we are done. Thus, suppose that $\left(E(C) \cap E\left(B^{*}\right)\right)-E\left(C\left[x_{B}, y_{B}\right]\right) \neq \emptyset$. Then B^{*} contains an edge of $C\left[u_{2}, x\right]-\{x\}$, and hence by Claim 3, $\left|S_{B}\right| \leq 1$. This implies that D has at most two attachments on $T_{B} \cup S_{B}$ if $S_{B}=\emptyset$; otherwise, that is, if $\left|S_{B}\right|=1$, then D contains an edge in Q_{B} (see the

Figure 2: The C-Tutte path T in G.
definition of Q_{B}), and hence D also has at most two attachments on $T_{B} \cup S_{B}$. Note that $E(C) \cap E\left(B^{*}\right) \subset E\left(C_{B}\right)$, and furthermore $E(C) \cap E\left(B^{*}\right)=E\left(Q_{B}\right)$ if $\left|S_{B}\right|=1$. Then in either case, we obtain that D has at most three attachments on T and at most two attachments on T if D contains an edge of C.

Suppose next that D satisfies (ii). Since $\left|S_{D}\right| \leq 2, D$ has at most three attachments on $C\left[x, u_{1}\right] \cup T_{H}$ such that at most one of them is on $C\left[x, u_{1}\right]$. Furthermore, if D contains an edge of C, then by the planarity of G, D contains an edge of $C\left[u_{2}, x\right]-\{x\}$. Then D has at most two attachments by the same arguments as in the previous paragraph.

These imply that T is a C-Tutte path in G from x to y through e, and we complete the proof of statement (i).

Proof of statement (ii). Let G be a plane graph and let C be the outer walk of G. Let $x, y \in V(C)$ with $x \neq y$, and $S \subset V(C)-\{x, y\}$ with $|S| \leq 2$.
(a) Suppose first that $|S|=1$ and C has a subpath Q_{1} from z to y with $x \in V\left(Q_{1}\right)$, where $S=\{z\}$. Let G^{*} be the graph obtained from G by adding an edge connecting z and y so that Q_{1} and the edge $z y$ form the outer walk of G^{*}, say C^{*}. Since we assumed that Theorem 2 (I) holds for all graphs G^{\prime} with $\left|G^{\prime}\right| \leq|G|, G^{*}$ has a C^{*}-Tutte path T^{*} from z to x through the edge $z y$. Let T be the path obtained from T^{*} by deleting z. Note that T is a path in G from x to y with $V(T) \cap S=\emptyset$. Since $E\left(Q_{1}\right)=E\left(C^{*}\right)-\{z y\}$, $T \cup S$ is a Q_{1}-Tutte subgraph in G. This completes the proof of (a).
(b) Suppose that $|S|=2$ and C has a subpath Q_{2} from x to y with $V\left(Q_{2}\right) \cap S=\emptyset$. Let $\left\{z_{1}, z_{2}\right\}=S$, and by symmetry, we may assume that x, z_{1}, z_{2}, y appear in C in this clockwise order. Let G^{*} be the graph obtained from G by deleting z_{2} and adding an edge connecting z_{1} and x so that Q_{2}, the edge $z_{1} x$ and all neighbors of z_{2} appear in the outer walk of G^{*}, say C^{*}. Since we assumed that Theorem 2 (I) holds for all graphs G^{\prime} with $\left|G^{\prime}\right| \leq|G|, G^{*}$ has a C^{*}-Tutte path T^{*} from z_{1} to y through the edge $z_{1} x$. Let T be the path obtained from T^{*} by deleting z_{1}. Note that $V(T) \cap S=\emptyset$. Let B be a $(T \cup S)$-bridge of G. If z_{2} is not an attachment of B, then B has at most three attachments and at most
two attachments if B contains an edge of C^{*}. Notice that $E\left(Q_{2}\right) \subset E\left(C^{*}\right)$. On the other hand, if z_{2} is an attachment of B, then $B-z_{2}$ is a T^{*}-bridge of G^{*} containing an edge of C^{*} because all neighbors of z_{2} appear in C^{*}. Thus, $B-z_{2}$ has at most two attachments on $T \cup\left\{z_{1}\right\}$, and at most three attachments on $T \cup S$ one of which is z_{2}. In particular, by the planarity of G and the fact that Q_{2} is a subpath of the outer walk of G, B contains no edge of Q_{2}. These imply that $T \cup S$ is a Q_{2}-Tutte subgraph in G, and this completes the proof of (b).

Acknowledgement

We thank the referee for helpful comments and suggestions for our paper.

References

[1] N. Chiba and T. Nishizeki, A theorem on paths in planar graphs, J. Graph Theory 10 (1986) 449-450.
[2] K. Kawarabayashi and K. Ozeki, 4-connected projective planar graphs are hamiltonian-connected, to appear in J. Combin. Theory Ser. B.
[3] K. Ozeki and P. Vràna, 2-edge-Hamiltonian connectedness of planar graphs, Europe J. Combin. 35 (2014) 432-448.
[4] D.P. Sanders, On paths in planar graphs, J. Graph Theory 24 (1997) 341-345.
[5] R. Thomas and X. Yu, 4-connected projective-planar graphs are Hamiltonian, J. Combin. Theory Ser. B 62 (1994) 114-132.
[6] R. Thomas and X. Yu, Five-connected toroidal graphs are hamiltonian, J. Combin. Theory Ser. B 69 (1997) 79-96.
[7] R. Thomas, X. Yu and W. Zang, Hamilton paths in toroidal graphs, J. Combin. Theory Ser. B 94 (2005) 214-236.
[8] C. Thomassen, A theorem on paths in planar graphs, J. Graph Theory 7 (1983) 169-176.
[9] W.T. Tutte, A theorem on planar graphs, Trans. Amer. Math. Soc. 82 (1956) 99116.
[10] X. Yu, Disjoint paths, planarizing cycles, and spanning walks, Trans. Amer. Math. Soc. 349 (1997) 1333-1358.

[^0]: *This work was in part supported by JSPS KAKENHI Grant Number 25871053 and by Grant for Basic Science Research Projects from The Sumitomo Foundation.

