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Abstract

A graph is said to be Hamiltonian-connected if there exists a Hamiltonian path

between any given pair of distinct vertices. In 1983, Thomassen proved that ev-

ery 4-connected plane graph is Hamiltonian-connected, using the concept of Tutte

subgraph. In this paper, we give a new proof to Thomassen’s theorem.

1 Introduction

In 1956, Tutte [9] proved that every 4-connected plane graph contains a Hamiltonian

cycle. Extending the technique of Tutte, Thomassen [8] proved that every 4-connected

plane graph is Hamiltonian-connected, i.e. there is a Hamiltonian path between any given

pair of distinct vertices. For the proof of these two results, they considered a stronger

concept, called a Tutte subgraph.

Let T be a subgraph of a graph G. A T -bridge of G is either (i) an edge of G−E(T )

with both end vertices on T or (ii) a subgraph of G induced by the edges in a component

of G− V (T ) and all edges from that component to T . A T -bridge with the former type

is said to be trivial, while the latter is non-trivial. For a T -bridge B of G, the vertices

in B ∩ T are the attachments of B (on T ). We say that T is a Tutte subgraph in G if

every T -bridge of G has at most three attachments on T . For another subgraph C of

G, the subgraph T is a C-Tutte subgraph in G if T is a Tutte subgraph in G and every

T -bridge of G containing an edge of C has at most two attachments on T . A Tutte path

(respectively, a Tutte cycle) in a graph is a path (respectively, a cycle) which is a Tutte
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subgraph. For a connected plane graph G, the boundary walk of the outer face is called

the outer walk of G. Furthermore, if it is a cycle, then it is the outer cycle of G.

Thomassen [8] proved the following result. (Although Thomassen’s proof in [8] con-

tained a small omission, it was corrected by Chiba and Nishizeki [1].)

Theorem 1 (Thomassen [8]) Let G be a 2-connected plane graph, let C be the outer

cycle of G, let x ∈ V (C), let y ∈ V (G)− {x}, and let e ∈ E(C). Then G has a C-Tutte

path from x to y through e.

It is easy to see that Theorem 1 implies the result stating that every 4-connected

plane graph is Hamiltonian-connected. In fact, for a given pair of distinct vertices x and

y in a given 4-connected plane graph G, we first specify a facial cycle C incident with x

and an edge e in C. Actually, we can specify the edge e (and the cycle C) so that neither

x nor y is an end vertex of e. Then we consider the graph G so that C is the outer cycle,

and it follows from Theorem 1 that G has a C-Tutte path T from x to y through e. By

the choice of the edge e, we have |T | ≥ 4. If there exists a non-trivial T -bridge B of G,

then the attachments of B form a cut set of order at most 3 that separates T − (B ∩ T )

from B − (B ∩ T ), which contradicts that G is 4-connected. Therefore, there exists no

non-trivial T -bridge of G, which means that T is a Hamiltonian path. This shows that

G is Hamiltonian-connected, and we are done.

Note that in several papers, finding Tutte subgraphs is a crucial method to show

Hamiltonicity or other related properties of graphs on surfaces. See for example, [2, 3, 4,

5, 6, 7, 10]. The purpose of this note is to give a simpler proof to Theorem 1. Indeed, we

show the following statement.

Theorem 2 Let G be a connected plane graph and let C be the outer walk of G. Then

both of the following hold:

(I) Let x ∈ V (C), y ∈ V (G)−{x} and e ∈ E(C). If G has a path from x to y through

e, then G has a C-Tutte path from x to y through e.

(II) Let x, y ∈ V (C) with x ̸= y, and S ⊂ V (C)− {x, y} with |S| ≤ 2.

(a) Suppose that |S| = 1 and C has a subpath Q1 from z to y with x ∈ V (Q1),

where {z} = S. Then G has a path T from x to y such that V (T ) ∩ S = ∅ and

T ∪ S is a Q1-Tutte subgraph in G.

(b) Suppose that |S| = 2 and C has a subpath Q2 from x to y with V (Q2)∩S = ∅.
Then G has a path T from x to y such that V (T )∩S = ∅ and T ∪S is a Q2-Tutte

subgraph in G.

Note that statement (I) implies Theorem 1 as an immediate corollary and statement

(II-b) is exactly Theorem (2.4) in [5]. Our new ideas to prove Theorem 2 (I) are the

following;
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• Not assuming 2-connectedness.

Since Theorem 1 deals with 2-connected graphs only, in order to use the induction

hypothesis, we have to use some tricks to make reduced graphs 2-connected. In

fact, the proof in [8] first consider 2-cuts with certain conditions, and reduce a

given graph, if such a 2-cut exists, with several cases depending on the properties

of the 2-cut. On the other hand, since we only assume the connectedness in Theorem

2, we do not need to consider the step. Instead, we have to consider whether there

exists a cut vertex (see Claim 1), but the proof of it is much easier than to deal

with 2-cuts with certain conditions.

• A shorter proof to statement (II).

In order to show statement (I), we need a statement like (II). Thomassen [8] (and

other researchers, for example in [1, 5]) has considered a block decomposition to

show statement (II), together with the induction hypothesis for statement (I). In

this paper, we actually give a shorter proof to statement (II), directly using the

induction hypothesis for statement (I). Because of that, we could reduce the length

of the proof.

Notice also that statement (I) guarantees the existence of a C-Tutte path connecting

two given vertices through a given edge, which easily implies the existence of a C-Tutte

path connecting two given vertices through a given vertex. In Section 2, we will often

use the latter statement when we consider the induction hypothesis.

Let P be a path or a cycle with fixed direction. For two vertices x and y in P , P [x, y]

denotes the subpath of P from x to y (along the direction).

2 Proof of Theorem 2

We prove Theorem 2 by using simultaneous induction on the order of G. Actually, we

will show the following two statements.

(i) Theorem 2 (I) holds for a graph G if both Theorems 2 (I) and (II) hold for all

graphs G′ with |G′| < |G|.

(ii) Theorem 2 (II) holds for a graph G if Theorem 2 (I) holds for all graphs G′ with

|G′| ≤ |G|.

Note that both Theorems 2 (I) and (II) clearly hold for all graphs of order at most 3.

Hence proving the above two statements completes the proof of Theorem 2.

Proof of statement (i).

Let G be a plane graph, let C be the outer walk of G, let x ∈ V (C), let y ∈ V (G)−{x},
and let e ∈ E(C). Suppose that G has a path from x to y through e. We first show the

following claim.
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Claim 1 If G has a cut vertex, then G has a C-Tutte path from x to y through e.

Proof. Suppose contrary that G has a cut vertex v. Let G′
1 be a component of G− v

with V (G′
1) ∩ V (C) ̸= ∅, let G1 be the subgraph of G induced by V (G′

1) ∪ {v}, and let

G2 = G − V (G′
1). Note that |G1|, |G2| < |G|. If V

(
G2 − v

)
∩ V (C) ̸= ∅, then we can

use the symmetry between G1 and G2, and hence by symmetry, we may assume that

x ∈ V (G1); Otherwise, that is, if V
(
G2−v

)
∩V (C) = ∅, then x ∈ V (G1) since x ∈ V (C).

In either case, we have x ∈ V (G1). Let C1 be the restriction of C into G1.

Assume that y is also contained in G1. Since G has a path from x to y through e,

the edge e is also contained in G1 and G1 has a path from x to y through e. Since we

assumed that Theorem 2 (I) holds for all graphs G′ with |G′| < |G|, G1 has a C1-Tutte

path T from x to y through e. Then we can easily see that T is a C-Tutte path in G

from x to y through e, and we are done.

Hence we may assume that y is contained in G2 − v. Let C2 be the restriction of C

into G2. Here we assume that e is contained in G1, but we can show the other case (when

e is contained in G2) by the almost same arguments. Since G has a path from x to y

through e, G1 has a path from x to v through e and G2 has a path from v to y. Since we

assumed that Theorem 2 (I) holds for all graphs G′ with |G′| < |G|, G1 has a C1-Tutte

path T1 from x to v through e and G2 has a C2-Tutte path T2 from v to y. Then letting

T = T1 ∪ T2, we see that T is a C-Tutte path in G from x to y through e, and we are

done. This completes the proof of Claim 1. □

Throughout the rest of the proof of statement (i), it follows from Claim 1 that we

may assume that G is 2-connected. Thus, C is a cycle. We fix the direction of C in the

clockwise order.

Let e = u1u2. If {x, y} = {u1, u2}, then the edge xy itself is a C-Tutte path in G, and

we are done. Thus, we may assume that {x, y} ̸= {u1, u2}. This and symmetry imply

that y ̸= u1, u2, since otherwise, we can change the roles of x and y. Furthermore, it

follows from the symmetry between u1 and u2 that we may assume that G has a path

from x to y through u1 and then u2. Then the subpath C[x, u1] of C, which is directed

in the clockwise order, satisfies that G− V
(
C[x, u1]

)
has a path from u2 to y.

Let H be the component of G− V
(
C[x, u1]

)
containing u2 and y, and let CH be the

outer walk of H. Take a vertex w in V (CH)∩V (C) so that there exists a path in H from

u2 to y through w, and w is as close to x on C[u2, x] as possible under the condition.

Since u2 can play the role of w except for the last condition, such a vertex w exists. Since

we assumed that Theorem 2 (I) holds for all graphs G′ with |G′| < |G|, H has a CH-Tutte

path TH from u2 to y through w. See Figure 1.

We claim that we can take such a path TH so that |TH | ≥ 3, unless u2 and y are

connected by an edge that is a cut-edge of H. Suppose that |TH | ≤ 2. Since y ̸= u2,

we have |TH | = 2, TH consists of only u2 and y, and w = u2 or w = y. If there exists a

vertex w′ such that w′ ̸= u2, y and H has a path from u2 to y through w′, then instead

of the path TH , we can take a CH-Tutte path T ′
H from u2 to y through w′. Note that T ′

H

has the properties same as TH together with the condition |T ′
H | ≥ 3, and the claim holds.
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Figure 1: The CH-Tutte path TH and non-trivial
(
C[x, u1] ∪ TH

)
-bridges of G. (The

outer rectangle represents the outer cycle C of G. The regions with falling diagonals

stroke from top left to bottom right represent non-trivial
(
C[x, u1] ∪ TH

)
-bridges of G

having an attachment on C[x, u1]. The regions bounded by dotted curves are graphs B∗

for B ∈ B̃2. )

Therefore, there does not exist such a vertex w′. We can easily see that these properties

imply that u2 and y are connected by an edge that is a cut-edge of H. Then the claim

holds.

Let B1 (and resp. B2) be the set of non-trivial
(
C[x, u1] ∪ TH

)
-bridges B of G such

that B has exactly one (resp. at least two) attachments on C[x, u1]. For any B ∈ B2, let

xB and yB be the attachments of B on C[x, u1] such that xB is as close to x on C[x, u1] as

possible and yB is as close to u1 on C[x, u1] as possible. Note that xB ̸= yB and C[xB, yB]

is contained in C[x, u1] for any B ∈ B2. For B,B′ ∈ B2, we write B′ ⪯ B if either (i)

B = B′, or (ii) B′ is contained in the disk bounded by Q ∪ C[xB, yB], where Q is a path

in B connecting xB and yB. Since G is a plane graph and C[x, u1] is a subpath of the

outer cycle C of G, the binary relation ⪯ is a partial order on B2. Let B̃2 be the set of

maximal elements of B2 with respect to the partial order ⪯. By the planarity, we have

the following claim.

Claim 2 For any B,B′ ∈ B̃2 with B ̸= B′, C[xB, yB] and C[xB′ , yB′ ] are edge-disjoint.

For B ∈ B1 ∪ B̃2, let SB = V (B) ∩ V (TH). If B ∈ B1, then let B∗ = B, and if

B ∈ B̃2, then let B∗ be the subgraph of G induced by the union of all elements B′ ∈ B̃2

such that B′ ⪯ B, together with C[xB, yB]. Let CB be the outer walk of B∗. Note that

if B ∈ B̃2, then C[xB, yB] is a subpath of CB with V (C[xB, yB]) ∩ SB = ∅. We need the

following claim.

Claim 3 For any B ∈ B1 ∪ B̃2, we have |SB| ≤ 2. Furthermore, if B∗ contains an edge

of C[u2, x]− {x}, then |SB| ≤ 1
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Proof. Let B ∈ B1∪B̃2. If SB = ∅, then the claim holds. Hence suppose that SB ̸= ∅.
Since B has an attachment on C[x, u1], B−V

(
C[x, u1]

)
is a TH-bridge of H containing an

edge of CH . Since TH is a CH-Tutte path in H, we have |SB| ≤ 2. So, the first statement

holds.

Suppose that B∗ contains an edge of C[u2, x]−{x} and |SB| = 2 for some B ∈ B1∪B̃2.

Since B has an attachment on C[x, u1] and B∗ contains an edge of C[u2, x]−{x}, it follows
from the definition of B∗ that B contains an edge of C[w, x] − {x}. Let {z1, z2} = SB,

and by symmetry, we may assume that TH passes through z1 first and then z2. Since B

is a
(
C[x, u1] ∪ TH

)
-bridge, B − V

(
C[x, u1]

)
is connected, and hence there exists a path

a contradiction. Thus, there exists a path Q in B − V
(
C[x, u1]

)
from z1 to z2 through a

vertex w′ for some w′ ∈
(
V (B)− {x, z1, z2}

)
∩ V

(
C[u2, x]

)
.

Since w ∈ V (TH), it follows from the choice of w′ that w′ ∈ V
(
C[w, x]

)
−{w, x}. Then

connecting TH [u2, z1], Q and TH [z2, y], we can find a path in H from u2 to y through w′,

which contradicts the choice of w. □

Let B ∈ B̃2. If |TH | ≥ 3, then V (TH)− SB ̸= ∅ since |SB| ≤ 2 by Claim 3. Suppose

that |TH | = 2. In this case, u2 and y are connected by an edge that is a cut-edge of

H. This implies that at least one of u2 and y is not an attachment of B∗, and hence

|SB| ≤ 1. In either case, V (TH)−SB ̸= ∅. Since V (TH)−SB ⊂ V (G)−V (B∗), we obtain

|B∗| < |G|. Since we assumed that Theorems 2 (I) and (II) hold for all graphs G′ with

|G′| < |G|, B∗ has a path TB from xB to yB with V (TB) ∩ SB = ∅ such that TB ∪ SB

is a CB-Tutte subgraph in B∗ if SB = ∅ (by Theorem (I)), or such that TB ∪ SB is a

QB-Tutte subgraph in B∗ if |SB| = 1, where QB is a subpath of CB from zB to yB with

xB ∈ V (QB) and {zB} = SB (by Theorem (II-a)), or such that TB ∪ SB is a C[xB, yB]-

Tutte subgraph in B∗ if |SB| = 2 (by Theorem (II-b)). Note that when |SB| = 1, then

E
(
C[xB, yB]

)
⊂ E

(
CB[zB, yB]

)
and xB ∈ V

(
CB[zB, yB]

)
. In particular, in either case,

TB ∪ SB is a C[xB, yB]-Tutte subgraph in B∗.

Let

T =
(
C[x, u1]−

∪
B∈B̃2

C[xB, yB]
)
∪

∪
B∈B̃2

TB ∪ {u1u2} ∪ TH .

See Figure 2. By Claim 2, T is a path in G from x to y through e. We will show that T

is a C-Tutte path in G.

Let D be a non-trivial T -bridge of G. Note that either (i) D is a non-trivial
(
TB∪SB

)
-

bridge of B∗ for some B ∈ B̃2, or (ii) D is a non-trivial
(
C[x, u1]∪TH

)
-bridge of G having

at most one attachment on C[x, u1].

Suppose first that D satisfies (i). Since TB ∪ SB is a C[xB, yB]-Tutte subgraph in B∗,

D has at most three attachments, and at most two attachments if D contains an edge

in C[xB, yB]. Hence if E(C) ∩ E(B∗) ⊆ E(C[xB, yB]), then we are done. Thus, suppose

that
(
E(C) ∩ E(B∗)

)
− E(C[xB, yB]) ̸= ∅. Then B∗ contains an edge of C[u2, x]− {x},

and hence by Claim 3, |SB| ≤ 1. This implies that D has at most two attachments on

TB ∪SB if SB = ∅; otherwise, that is, if |SB| = 1, then D contains an edge in QB (see the

6



x
u1

u2
w

y

xB yB

B∗

TB

TH
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Figure 2: The C-Tutte path T in G.

definition of QB), and hence D also has at most two attachments on TB ∪ SB. Note that

E(C) ∩ E(B∗) ⊂ E(CB), and furthermore E(C) ∩ E(B∗) = E(QB) if |SB| = 1. Then

in either case, we obtain that D has at most three attachments on T and at most two

attachments on T if D contains an edge of C.

Suppose next that D satisfies (ii). Since |SD| ≤ 2, D has at most three attachments

on C[x, u1]∪TH such that at most one of them is on C[x, u1]. Furthermore, if D contains

an edge of C, then by the planarity of G, D contains an edge of C[u2, x]− {x}. Then D

has at most two attachments by the same arguments as in the previous paragraph.

These imply that T is a C-Tutte path in G from x to y through e, and we complete

the proof of statement (i). □

Proof of statement (ii). Let G be a plane graph and let C be the outer walk of G.

Let x, y ∈ V (C) with x ̸= y, and S ⊂ V (C)− {x, y} with |S| ≤ 2.

(a) Suppose first that |S| = 1 and C has a subpath Q1 from z to y with x ∈ V (Q1),

where S = {z}. Let G∗ be the graph obtained from G by adding an edge connecting z

and y so that Q1 and the edge zy form the outer walk of G∗, say C∗. Since we assumed

that Theorem 2 (I) holds for all graphs G′ with |G′| ≤ |G|, G∗ has a C∗-Tutte path T ∗

from z to x through the edge zy. Let T be the path obtained from T ∗ by deleting z.

Note that T is a path in G from x to y with V (T )∩S = ∅. Since E(Q1) = E(C∗)−{zy},
T ∪ S is a Q1-Tutte subgraph in G. This completes the proof of (a).

(b) Suppose that |S| = 2 and C has a subpath Q2 from x to y with V (Q2) ∩ S = ∅.
Let {z1, z2} = S, and by symmetry, we may assume that x, z1, z2, y appear in C in this

clockwise order. Let G∗ be the graph obtained from G by deleting z2 and adding an edge

connecting z1 and x so that Q2, the edge z1x and all neighbors of z2 appear in the outer

walk of G∗, say C∗. Since we assumed that Theorem 2 (I) holds for all graphs G′ with

|G′| ≤ |G|, G∗ has a C∗-Tutte path T ∗ from z1 to y through the edge z1x. Let T be the

path obtained from T ∗ by deleting z1. Note that V (T )∩S = ∅. Let B be a
(
T ∪S

)
-bridge

of G. If z2 is not an attachment of B, then B has at most three attachments and at most
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two attachments if B contains an edge of C∗. Notice that E(Q2) ⊂ E(C∗). On the other

hand, if z2 is an attachment of B, then B− z2 is a T ∗-bridge of G∗ containing an edge of

C∗ because all neighbors of z2 appear in C∗. Thus, B − z2 has at most two attachments

on T ∪{z1}, and at most three attachments on T ∪S one of which is z2. In particular, by

the planarity of G and the fact that Q2 is a subpath of the outer walk of G, B contains

no edge of Q2. These imply that T ∪ S is a Q2-Tutte subgraph in G, and this completes

the proof of (b). □
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