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Abstract

In order to attack some problems in computational geometry, Hoffmann and Kriegel [SIAM
J. Discrete Math. 9 (1996) 210–224] considered the problem of whether a plane map can be
extended to a 3-colorable triangulation by adding edges. In this paper, we improve their results
to maps on non-spherical surfaces, by showing the following two results for a mosaic, i.e., a
map on a surface each of whose faces is triangular or quadrangular:

• A necessary and sufficient condition for mosaics on a surface to be extended to 3-colorable
triangulations. (Theorem 10)

• An explicit formula for calculating the number of distinct 3-colorable triangulations ex-
tended from a given mosaic on a surface. (Theorem 11)

These results suggest a significant gap between the planar case and the non-spherical case. We
also show that they improve several known results and have an application to polychromatic
coloring.

Keywords. 3-colorable triangulation, even triangulation, the fundamental group of a surface,

polychromatic coloring

1 Introduction

In this paper, we allow multiple edges and loops for graphs. A map on a surface F 2 is a 2-

cell embedding of a graph on F 2 without edge intersection. We define a triangulation and a

quadrangulation as a map in which every face is triangular and quadrangular, respectively. It is

easy to see that any map G can be extended to a triangulation by adding diagonal(s) into every

face of G.

Extension of plane maps is known as a powerful tool to solve some problems in computational

geometry. One of the most famous and classical example is Fisk’s proof [4] of the art-gallery

problem, using an extension to a disk triangulation (a 2-connected outer plane map in which every

inner face is triangular). Note that any disk triangulation is 3-colorable, which is a key fact in

Fisk’s proof. (Throughout this paper except for the last subsection, a 3-coloring of a graph G is

a proper vertex-3-coloring of G.) As an analogy to the art-gallery problem, the “prison (yard)

problem” is known (see also [5] for example). Hoffmann and Kriegel [8] considered the problem for

bipartite plane graphs with the same thought as Fisk’s idea. Indeed, they proved the following.

Theorem 1. ([8, Theorem 2.1]) Every bipartite plane graph can be extended to a 3-colorable

triangulation.
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Furthermore, Zhang and He [25] established an explicit formula for the number of distinct

3-colorable triangulations extended from a given plane quadrangulation.

In this paper, we generalize those results on plane quadrangulations to mosaics on a surface,

where a mosaic is a map on a surface in which every face is triangular or quadrangular. Note that

both of triangulations and quadrangulations are mosaics. We give the following two results:

• A necessary and sufficient condition for mosaics on a surface to be extended to 3-colorable

triangulations. (Theorem 10)

• An explicit formula for calculating the number of distinct 3-colorable triangulations extended

from a given mosaic on a surface. (Theorem 11)

As mentioned above, the problem of extending plane quadrangulations to 3-colorable trian-

gulations have been done in [8, 25], but their result heavily depends on the following fact. (See

[6, 21] for the proof.) A graph is even if all vertices have even degree.

Fact 2. A plane triangulation G is 3-colorable if and only if G is even.

So, for a given plane map G, extending G to an even triangulation is equivalent to that to

a 3-colorable triangulation. In fact, as an analogy of the planar case [25], Theorem 1 has been

generalized to the result on the extension of quadrangulations on non-spherical surfaces into “even

triangulations,” as in the following.

Theorem 3 ([18, 25]). Every quadrangulation on any surface can be extended to an even trian-

gulation.

Furthermore, the authors [18] established the explicit formula for the number of distinct even

triangulations extended from a given quadrangulation on a surface.

In contrast to the planar case, the situation is completely different if we focus on non-spherical

surfaces. That is, a 3-colorable triangulation on any surface is always even, but every non-spherical

surface admits a non-3-colorable even triangulation. In this paper, we consider the extension of a

map on a non-spherical surface to a “3-colorable triangulation.”

We emphasize that our problem is much more difficult than that in Theorem 3. For example,

given any quadrangulation G on a surface F 2, Theorem 3 guarantees that G can be extended

to an even triangulation. However, a quadrangulation G cannot be extended to a 3-colorable

triangulation if G is not 3-colorable, since adding edges does not decrease the chromatic number

of graphs. Moreover, it is not clear whether every 3-colorable quadrangulation can be extend to

a 3-colorable triangulation. What is a characterization of quadrangulations on a surface to be

extended to a 3-colorable triangulation? In this paper, we would like to answer those questions

completely for not only quadrangulations but also mosaics on surfaces.

The organization of this paper is as follows: We prepare several definitions in Section 2 to state

the main theorems, and we describe the theorems in Section 3. Giving lemmas in Section 4, then

we prove the main theorems in Section 5. In the last section, we show that our main theorems

improve several known results and have an application to polychromatic coloring.

2 Basic definitions

In this section, we give several definitions that play crucial roles in this paper. Those in Subsections

2.2, 2.3, 2.5 and 2.6 also appeared in [18].
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2.1 Surfaces and the fundamental group

Let Sk and Nk denote the orientable surface of genus k and the nonorientable surface of crosscap

number k, respectively. Note that S0 is the sphere, S1 is the torus, and N1 is the projective plane.

By the classification theorem, any surface is homeomorphic to Sk or Nk for some integer k ≥ 0.

Let g(F 2) denote the Euler genus of a surface F 2, where g(Sk) = 2k and g(Nk) = k. In this paper,

we often write g instead of g(F 2) for the simplicity.

Let F 2 be a surface. A closed curve on F 2 (with base point x0) is the image of a continuous

function γ : [0, 1] → F 2 with γ(0) = γ(1) (= x0). To avoid abuse of notation, we simply write a

closed curve γ instead of its image. A closed curve γ on F 2 is essential if γ does not bound a 2-cell

on F 2, while a closed curve that is not essential is contractible. If a tubular neighborhood of γ is

a Möbius strip, then it is 1-sided; otherwise it is 2-sided. Two closed curves γ1 and γ2 on F 2 are

homotopic if there exists a continuous map Φ : [0, 1] × [0, 1] → F 2 such that Ψ(0, x) = γ1(x) and

Ψ(1, x) = γ2(x) for each x ∈ [0, 1], where Ψ(t, 0) = Ψ(t, 1) = x0 for each t ∈ [0, 1].

Now we fix a point x0 on F 2, and consider the set Γ of all closed curves on F 2 with base point

x0. It is known that being homotopic is an equivalent relation on Γ, called the homotopy, and

the quotient set of Γ by the homotopy is called the fundamental group of F 2 with base point x0,

denoted by π1(F
2, x0). In fact, π1(F

2, x0) is a group with the product ∗, where for two homotopy

classes [γ1] and [γ2], [γ1]∗[γ2] is the homotopy class containing the concatenation γ1∗γ2. (Formally

it is defined as (γ1 ∗γ2)(t) = γ1(2t) for 0 ≤ t ≤ 1
2 and (γ1 ∗γ2)(t) = γ2(2t− 1) for 1

2 < t ≤ 1.) Note

that the identity element is the homotopy class corresponding to all contractible closed curves

with base point x0, and the inverse [γ1]
−1 is defined as the homotopy class containing −γ1, where

−γ1(t) = γ1(1 − t) for 0 ≤ t ≤ 1. It is known that the fundamental group π1(F
2, x0) does not

depend on the base point x0. Hence we can simply write it by π1(F
2).

Figures 1 and 2 show a canonical base of π1(F
2) for a non-spherical surface F 2, when F 2 is

orientable and nonorientable, respectively. (To be exact, each closed curve in the figures represents

the homotopy class containing it.) It is known that the number of elements in a base is g = g(F 2).

We refer other notations to [20].

Figure 1: A canonical base of π1(Sk). Figure 2: A canonical base of π1(Nk).

2.2 The Z2-homology space of a map

An embedding of a graph G on a surface F 2 must be an injective continuous mapping from G to

F 2, while a drawing of G on F 2 is a continuous one and might not be an injection.

In this paper, we distinguish an intersection and a crossing of two objects, which are graphs

drawn on a surface or closed curves on it. An intersectiton is a common point on the surface

by the two objects in an ordinary way without considering directions. In contrast, a crossing

is defined by two objects with directions. The formal definition of a crossing will be given in

Subsection 2.7. Throughout this paper, for a drawing of G on F 2, we assume that a closed curve

γ on F 2 transversely intersects with G on F 2, and that γ passes through neither a vertex of G nor

a intersection point of G.

Let G be a map on a surface F 2. In this paper, we sometimes regard a closed walk in G

with fixed direction as a closed curve on F 2. For a closed walk W in G, we denote by W̃ the
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(undirected) subgraph of G consisting of the edges that appear in W an odd number of times.

Since W is a closed walk, W̃ is an even subgraph of G.

For two subgraphs H and H ′ of G, we denote by H△H ′ the symmetric difference of H and

H ′, which is the graph induced by the edges that are contained in exactly one of H and H ′. We

can easily see that if both H and H ′ are even graphs, then so is H△H ′. The set of all even

subgraphs of G forms a Z2-space with the symmetric difference △ as a product and an empty

graph as identity. It is called the cycle space of G. See [3, Page 24] for the details about the cycle

space.

Two even subgraphsH andH ′ of G are Z2-homologous (on G) if there exists a set {D1, . . . , Dr}
of facial cycles of G such that H ′ = H△D1△· · ·△Dr. Note that the Z2-homologous relation is an

equivalence relation on the cycle space. If two closed walks W and W ′ in G are homotopic, then

W̃ and W̃ ′ are Z2-homologous, but the converse does not generally hold. The quotient set of the

cycle space by the Z2-homologous relation is the Z2-homology space of G. Let W = {γ1, . . . , γg}
be a canonical base of the fundamental group π1(F

2) of F 2, see Figures 1 and 2. Since G is 2-cell

embedded on F 2, for each γi, there exists a closed walk Wi of G such that Wi is homotopic to γi.

Then the set {W̃1, . . . , W̃g} is a base of the Z2-homology space of G, called a canonical base.

2.3 Dual of a map on a surface

Let G be a mosaic on a surface. For a vertex f∗ of degree 4 in the dual G∗ of G with four edges

e∗1, e
∗
2, e

∗
3 and e∗4 incident to f∗ in this cyclic order (so, f is a quadrangular face of G surrounded

by the cycle with edges e1, e2, e3, e4), we say that e∗i is opposite to e∗i+2 at v. A walk W of G∗ is a

straight walk, or shortly an S-walk, if W satisfies one of the following:

(i) W connects vertices of degree 3 in G∗, and for every internal vertex f∗ of W , f∗ has degree

4 in G∗ and W passes through f∗ from one edge to the opposite edge at f∗.

(ii) W is a closed walk using no edges twice, and for every vertex f∗ of W , f∗ has degree 4 and

W passes through f∗ from one edge to the opposite edge at f∗.

Note that an S-walk might intersect with itself, and the edge set of G∗ is uniquely partitioned

into S-walks. The concept of S-walks can be found in [2, 8, 18, 19, 25] (with sometimes different

names).

Using the concept of S-walks, we define the S-walk dual S(G) of a mosaic G as follows:

V
(
S(G)

)
= {f∗ : f is a triangular face of G},

and E
(
S(G)

)
= {W : W is an S-walk of G∗},

where each S-walk W corresponds to an edge of S(G) connecting two end vertices of W (if W

satisfies (i)), or an edge having no vertex (if W satisfies (ii)). In the latter case, we also regard

W as a cycle of S(G) of length 0. Note that S(G) is 3-regular and might have multiple edges or

loops. When G is a triangulation on a surface, then S(G) = G∗, and when G is a quadrangulation

on a surface, then S(G) has no vertices and consists of only edges. We can assume that S(G) is

drawn on the surface in a natural way as G does. Hence S(G) might have edge intersections, and

edges with self-intersection. Note that the S-walk dual is called the straight walk dual in [19].

Subdividing each edge of S(G) whenever it intersects with an edge in G, we obtain the subdi-

vided S-walk dual, denoted by Ŝ(G), of a mosaic G. So, we have

V
(
Ŝ(G)

)
= V

(
S(G)

)
∪ E(G).

Note that the number of components of Ŝ(G) is exactly the same as that of S(G). (For example,

see Figure 3, where S(G) has two vertices of degree 3 and two components one of which has no

vertices.)
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Figure 3: The S-walk dual S(G) in the left side, and the subdivided S-walk dual Ŝ(G) in the right

side of a plane mosaic G. The dotted lines represent edges of S(G) and those of Ŝ(G), respectively.

The black circles are vertices of G, while the white circles are vertices of S(G) and those of Ŝ(G).

2.4 Face rotation system and orientizing subgraphs

Let G be a map on a surface F 2. We give an arbitrary rotation ξf to each face f , clockwise or

counter-clockwise, and let Ξ = {ξf : f is a face of G}, which is called a face rotation system of

G. This is the dual of an ordinary rotation system, see [16, Pages 90–94]. Then every edge e in G

receives two orientations from both sides of faces by Ξ. If the two directions do not coincide (resp.,

do coincide), then e is coherent (resp., incoherent). Note that G has a consistent face rotation

system, i.e., one such that all edges are coherent if and only if F 2 is orientable. For a given Ξ, the

subgraph of G induced by all incoherent edges is called the orientizing subgraph of G and denoted

by HΞ. It is easy to see that each vertex is incident with an even number of incoherent edges.

Therefore, any orientizing subgraph of a map G is an even subgraph of G.

Remark 1: (Orientizing subgraph) As mentioned above, any orientizing subgraph HΞ is an

even subgraph of a map G, and hence we can regard HΞ as a set of cycles. We can cut G along

those cycles and obtain the map GΞ on the (possibly disconnected) surface, say F 2
Ξ, obtained from

F 2 by cutting along those cycles and pasting a disk to each resultant boundary. Then the graph

GΞ is said to be obtained by cutting along HΞ. (See [16, Pages 105–106] for the formal definition.)

Since cutting along HΞ breaks all incoherent edges, F 2
Ξ is orientable. Actually the name of an

“orientizing” subgraph comes from this fact.

For an orientizing subgraph, we have the following lemma. Lemma 4 suggests that an orientiz-

ing subgraph does not depend on the choice of a face rotation system Ξ, up to the Z2-homologous

relation.

Lemma 4. Let G be a map on a surface F 2.

• If F 2 is orientable, then any orientizing subgraph is Z2-homologous to an empty graph.

• If F 2 is nonorientable, then any orientizing subgraph is Z2-homologous to W̃1△ . . .△W̃g,

where {W̃1, . . . , W̃g} is a canonical base of the Z2-homology space of G.

Proof. First, we consider the case when F 2 is orientable. Let Ξ be a face rotation system of

G. Since F 2 is orientable, we can give a clockwise rotation ξ0f for each face f , and let Ξ0 be

the corresponding face rotation system of G. By this choice, there are no incoherent edges with

respect to Ξ0, and hence the orientizing subgraph HΞ0 is an empty graph. Let D be the set of

facial cycles of faces f with counter-clockwise rotation by ξf ∈ Ξ, that is,

D = {D : D is a facial cycle of a face f with ξf ̸= ξ0f}.
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By the definition of HΞ, it is easy to see that HΞ is obtained from HΞ0 by the symmetric difference

of all facial cycles D ∈ D. This directly implies that HΞ and HΞ0 are Z2-homologous.

Next, we consider the case when F 2 is nonorientable. Since we obtain the orientable surface

F 2
Ξ by cutting along HΞ, HΞ has to intersect with all 1-sided closed curves on F 2 an odd number of

times. It is well known that such even subgraph must be Z2-homologous to W̃1△ . . .△W̃g, where

{W̃1, . . . , W̃g} is a canonical base of the Z2-homology space of G.

2.5 An H-subdivided Z3-orientations

An orientation O of a graph G is an assignment of a direction to each edge of G. The resultant

directed graph is denoted by (G,O). Since O also gives an orientation to a subgraph P of G, we

simply write (P,O) in a natural way. Note that if we reverse the directions of all edges of (G,O),

then we get another orientation, denoted by O, of G, where O and O are called an orientation

pair of G.

Definition 5. LetH be a subgraph of a mosaicG on a surface F 2. AnH-subdivided Z3-orientation

of Ŝ(G) is an orientation of Ŝ(G) satisfying the following three conditions:

(H1) For every vertex f∗ of degree 3 in Ŝ(G), the out-degree of f∗ is 0 or 3. (Hence the in-degree

of f∗ is also 0 or 3.)

(H2) For every vertex e of degree 2 in Ŝ(G), if e does not correspond to an edge of H, then the

out-degree of e is exactly 1. (Hence the in-degree of e is also exactly 1.)

(H3) For every vertex e of degree 2 in Ŝ(G), if e corresponds to an edge of H, then the out-degree

of e is 0 or 2. (Hence the in-degree of e is also 0 or 2.)

In this paper, we mainly consider an HΞ-subdivided Z3-orientation for a face rotation system

Ξ of G. We discuss this in the next subsection.

Remark 2: (Z3-orientation) An H-subdivided Z3-orientation is a generalization of the ordi-

nary Z3-orientation, which can be regarded as an ∅-subdivided Z3-orientation. (See [23, 24] for

details on Z3-orientations.) Indeed, a graph has a Z3-orientation if and only if it has a nowhere

zero 3-flow [13, 14], and a nowhere zero 3-flow is known as the “dual” concept of the 3-colorability

for graphs on surfaces [22]. Those facts are behind of the arguments in this paper, while they do

not appear explicitly.

2.6 The existence of an HΞ-subdivided Z3-orientation

One of the key tools in this paper is an HΞ-subdivided Z3-orientation for a face rotation system

Ξ of G. We here discuss when it exists, using several ideas as in [18]. Note that the authors were

concerned mainly with quadrangulations, but as in [18, Remark in Section 3], we can modify the

arguments for mosaics, using the cycle space.

Let G be a mosaic on a surface F 2, let W̃ = {W̃1, . . . , W̃g} be a canonical base of the Z2-

homology space of G, and let C = {C1, . . . , Cℓ} be a base of the cycle space of Ŝ(G). The

intersection matrix of G with respect to C and W̃, denoted by IM(G), is an (ℓ× g)-matrix on Z2

such that its (i, j)-entry wij is the number of intersections by Ci and W̃j with modulo 2. This is
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defined as follows:

IM(G) =


W̃1 W̃2 · · · W̃g

C1 w11 w12 . . . w1g

C2 w21 w22 . . . w2g
...

...
...

. . .
...

Cℓ wℓ1 wℓ2 . . . wℓg

.

When F 2 is the sphere, the intersection matrix IM(G) of G is an (ℓ×0)-matrix, which is degenerate.

Let c⃗ = (c1, . . . , cℓ)
T be the column vector, where ci is the number of triangular faces contained

in Ci with modulo 2. Then for a column vector x⃗ = (x1, . . . , xg)
T with Z2 elements, we set the

following system of linear equations, called the extended intersection system of G with respect to

C and W̃:

IM(G) x⃗ = c⃗. (1)

Using the extended intersection system (1) of G, the authors gave a necessary and sufficient

condition for mosaics to be extended to even triangulations.

Theorem 6. [18, Theorem 13] Let G be a mosaic on a surface F 2. Then G can be extended

to an even triangulation if and only if the extended intersection system (1) has a solution.

Example: By an example, we show what the intersection system means. A mosaic G in Figure

4 has a vertex of degree 3 surrounded by three triangular faces, and G cannot be extended to an

even triangulation. Let C1 = e1f1e2f2e3f3 be the cycle as in Figure 4, and let C be a base of

the cycle space of Ŝ(G) containing C1 as an element. Since C1 contains exactly three triangular

faces, we have c1 = 1. Furthermore, since C1 is contractible, every W̃j intersects with C1 an even

number of times. This means that w1j = 0 for j ∈ {1, . . . , g}. Thus, the first equation of the

extended intersection system (1) is

0⃗ · x⃗ = 1

and hence (1) has no solution. This corresponds to the fact that G cannot be extended to an even

triangulation in terms of Theorem 6.

Figure 4: A mosaic G that cannot be extended to an even triangulation.

For the proof of Theorem 6 in [18], the authors gave a connection between a solution x⃗ of

the extended intersection system (1) of G and the existence of an H-subdivided Z3-orientation.

Actually, any solution x⃗ of the extended intersection system (1) indicates the subgraph Hx⃗ of G

as follows. Let x⃗ = (x1, . . . , xg)
T be a column vector with Z2 elements, and let i1, . . . , ip be the

indices such that xr = 1 if and only if r ∈ {i1, . . . , ip}. Then define Hx⃗ as the empty graph if

x⃗ = 0⃗ = (0, . . . , 0)T ; otherwise let

Hx⃗ = W̃i1△W̃i2△· · ·△W̃ip .
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We say that the subgraph Hx⃗ is produced by x⃗.

If G is a quadrangulation on F 2, then the following four were shown in [18]. See [18, Definition

4] for the definition of the parity condition.

(i) [18, Lemma 5] The subdivided S-walk dual Ŝ(G) has an H-subdivided Z3-orientation if

and only if H satisfies the parity condition.

(ii) [18, Lemma 15 (i)] For any solution x⃗ of the extended intersection system (1) of G, the

subgraph Hx⃗ produced by x⃗ is an even subgraph of G satisfying the parity condition.

(iii) [18, Lemma 15 (iii)] For any even subgraph H of G satisfying the parity condition, there

exists a solution x⃗ of the extended intersection system (1) of G such that H is Z2-homologous

to Hx⃗.

(iv) A direct consequence of [18, Lemma 19 (i)] For any two even subgraphs H and H ′

that are Z2-homologous, if there is an H-subdivided Z3-orientation in Ŝ(G), then there is

also an H ′-subdivided Z3-orientation in Ŝ(G).

Then by suitable modification to mosaics, we obtain the next lemma. We leave the detail of

the proof to the readers. In fact, the combination of (i), (ii) and (iv) gives a proof of the “if” part,

while the combination of (i) and (iii) gives a proof of the “only if” part.

Lemma 7. Let G be a mosaic on a surface F 2 and let H be a subgraph of G. Then Ŝ(G) has an

H-subdivided Z3-orientation if and only if there exists a solution x⃗ of the extended intersection

system (1) of G such that H is Z2-homologous to Hx⃗.

We say that a mosaic G on a surface F 2 satisfies the orientizing condition if G satisfies the

following:

• If F 2 is orientable, then the vector 0⃗ = (0, . . . , 0)T is a solution of the extended intersection

system (1) of G with respect to a base C of the cycle space of Ŝ(G) and a canonical base

W̃ of the Z2-homology space of G. Note that this condition is equivalent to c⃗ = 0⃗, and

furthermore to the condition that any cycle of Ŝ(G) contains an even number of triangular

faces of G, i.e. S(G) is bipartite.

• If F 2 is nonorientable, then the vector 1⃗ = (1, . . . , 1)T is a solution of the extended intersec-

tion system (1) of G with respect to a base C of the cycle space of Ŝ(G) and a canonical

base W̃ of the Z2-homology space of G.

Note that H0⃗ is an empty graph. On the other hand, H1⃗ is Z2-homologous to W̃1△ . . .△W̃g,

where {W̃1, . . . , W̃g} is a canonical base of the Z2-homology space of G. Therefore, together with

Lemmas 4 and 7, these imply the following lemma.

Lemma 8. Let G be a mosaic on a surface F 2, and let Ξ be a face rotation system of G. Then

Ŝ(G) has an HΞ-subdivided Z3-orientation if and only if G satisfies the orientizing condition.

2.7 The crossing number

Let G be a mosaic on a surface F 2, let Ξ be a face rotation system of G and let O be an orientation

of Ŝ(G). For a closed curve γ on F 2 and a subgraph P of Ŝ(G), the crossing number of γ and

(P,O) with respect to Ξ, denoted by crΞ
(
γ, (P,O)

)
, is defined as follows. For each crossing point

p of γ and (P,O), we may regard that a portion of γ, denoted by r⃗, and a directed edge of (P,O),
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denoted by e⃗, cross orthogonally at p. Let f be the face of G containing p in the interior and let

ξf ∈ Ξ be the face rotation of f . Then define

crΞ
(
γ, (P,O); p

)
=

{
+1 if e⃗ matches r⃗ after rotating by π

2 in the forward direction of ξf ,

−1 if e⃗ matches r⃗ after rotating by π
2 in the backward direction of ξf ,

(see Figure 5 for example) and define

crΞ
(
γ, (P,O)

)
=
∑
p

crΞ
(
γ, (P,O); p

)
,

where the sum is taken over all crossing points p of γ and (P,O). It is clear from the definition

that crΞ
(
γ, (P,O)

)
= −crΞ

(
γ, (P,O)

)
. For the crossing number, we have the following lemma.

Figure 5: The situations for crΞ
(
γ, (P,O); p

)
= +1 (left) and −1 (right). The gray circle arcs

represent ξf ∈ Ξ for the corresponding face, the black thick curves represent γ, and the red dotted

lines represent a direct edge e⃗ in (P,O), respectively.

Lemma 9. Let G be a mosaic on a surface F 2, let Ξ be a face rotation system of G and let P be

a component of Ŝ(G). Suppose that Ŝ(G) has an HΞ-subdivided Z3-orientation O. Then for any

two homotopic closed curves γ and γ′ on F 2, we have

crΞ
(
γ, (P,O)

)
≡ crΞ

(
γ′, (P,O)

)
(mod 3).

In particular, if γ is contractible, then crΞ
(
γ, (P,O)

)
≡ 0 (mod 3).

Proof. Look at four situations (A)–(D) shown in Figure 6, each of which represents a part of two

homotopic closed curves γ and γ′, and suppose that the remaining parts of γ and γ′ are exactly

the same.

In the situation (A), there is a vertex f∗ of degree 3 in P , and let e1, e2, and e3 be three vertices

of P adjacent with f∗. Since O satisfies (H1) in Definition 5, we see that the crossing number

crΞ
(
γ, (P,O)

)
of γ and (P,O) changes to crΞ

(
γ′, (P,O)

)
as (−(+1)+(−2)) ≡ 0 or (−(−1)+(+2)) ≡

0 (mod 3). Then crΞ
(
γ, (P,O)

)
≡ crΞ

(
γ′, (P,O)

)
(mod 3). Similarly, in the situation (B), since

crΞ
(
γ′, (P,O); p

)
= −crΞ

(
γ′, (P,O); p′

)
, where p and p′ are two crossing points of γ′ and (P,O),

we have crΞ
(
γ, (P,O)

)
= crΞ

(
γ′, (P,O)

)
. On the other hand, in the situation (C), since HΞ is

an even subgraph of G, the remaining parts of γ and γ′ have the same consistent rotation with

respect to Ξ. Thus, we see that crΞ
(
γ, (P,O)

)
= crΞ

(
γ′, (P,O)

)
. This is the same for the situation

(D). Therefore, the homotopic shifts in those four situations (A)–(D) in Figure 6 do not change

the crossing number with modulo 3. Note that for any two homotopic closed curves, one can be

obtained from the other by a sequence of homotopic shifts in the situations (A)–(D). This proves

the first statement in Lemma 9.

For the second statement, consider a contractible closed curve γ0 on F 2 that does not intersect

with (P,O). Trivially, crΞ
(
γ0, (P,O)

)
= 0. Since any contractible closed curve γ is homotopic to

γ0, we have

crΞ
(
γ, (P,O)

)
≡ crΞ

(
γ0, (P,O)

)
= 0 (mod 3).
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Figure 6: Two homotopic closed curves γ and γ′ crossing (P,O) or edges in HΞ. In (C) and (D),

the bold lines represent edges in HΞ.

2.8 The crossing matrix and the crossing system

Let G be a mosaic on a surface F 2, let Ξ be a face rotation system of G, let W = {γ1, . . . , γg} be a

base of the fundamental group π1(F
2) of F 2 and let {P1, . . . , Pm} be the set of all components of

Ŝ(G). Suppose that Ŝ(G) has an HΞ-subdivided Z3-orientation O0. Then the crossing matrix of

G (with respect to Ξ, W and O0), denoted by CM(G), is a (g×m)-matrix with entry uij ∈ Z3 for

1 ≤ i ≤ g and 1 ≤ j ≤ m, where uij ≡ crΞ
(
γi, (Pj ,O0)

)
(mod 3). That is, it is defined as follows:

CM(G) =


P1 P2 · · · Pm

γ1 u11 u12 . . . u1m
γ2 u21 u22 . . . u2m
...

...
...

. . .
...

γg ug1 ug2 . . . ugm

.

Note that when F 2 is the sphere, CM(G) is a (0×m)-matrix, which is degenerate.

For a column vector x⃗ = (x1, . . . , xm)T with Z3 elements, we set the following system of linear

equations, and call it the crossing system of G (with respect to Ξ, W and O0):

CM(G) x⃗ = 0⃗. (2)

We say that a vector x⃗ is good if xi ∈ {1, 2} for 1 ≤ i ≤ m.

Remark 3: (The crossing system of G) Observe that the definition of the crossing system

(2) of G depends on a face rotation system Ξ, a base W of the fundamental group π1(F
2) of a

surface F 2, and an HΞ-subdivided Z3-orientation O0. However, the number of good solutions is

independent of the choice of those. Actually, we can check this fact for Ξ, W and O0 by (iv) before

Lemma 7 ([18, Lemma 19]), by Lemma 9, and by Fact 13 in Subsection 4.1, respectively. Since

we are only concerned with the number of good solutions, we sometimes take the crossing system

(2) of G without specifying Ξ, W and O0.
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3 Main theorems

We are ready to state the main theorems. The proofs of them will appear in Section 5, after some

lemmas in the next section.

Theorem 10. Let G be a mosaic on a surface F 2. Then G can be extended to a 3-colorable

triangulation if and only if (I) G satisfies the orientizing condition and (II) the crossing system

(2) of G has a good solution.

Theorem 11. Let G be a mosaic on a surface F 2. Suppose that G satisfies the orientizing

condition. If the crossing system (2) of G has exactly n good solutions, then G can be extended

to exactly n/2 distinct 3-colorable triangulations.

Therefore, for the extension of given mosaics, we need two conditions (I) and (II) as in Theorem

10. Recall that any 3-colorable triangulation is an even triangulation (while the converse does not

generally hold). Therefore, for mosaics to be extended to 3-colorable triangulations, it must be

extended to even triangulations. Theorem 6 suggests that (I) the orientizing condition controls

that, and then (II) does 3-colorability.

Remark 4: (Monodoromy) There is some tool, called a monodoromy, to “measure” how

different from 3-colorability an even triangulation is.

Let T be an even triangulation on a closed surface F 2, and let W = f0f1 · · · fk be a sequence of

faces of T , called a face walk, such that fi and fi+1 share an edge for i = 0, 1, . . . , k−1. Let f = f0,

and let W i = f0 · · · fi for i ∈ {0, 1, . . . , k}. Then define the bijection σT,W i,f : V (f0) → V (fi)

recursively, as follows. For i = 0, σT,W 0,f = id, where id represents the identity mapping. For i > 0,

define σT,W i,f so that σT,W i,f and σT,W i−1,f coincide on V (fi−1)∩V (fi). Let σT,W,f = σT,Wk,f . If

W is closed (i.e., k > 0 and f0 = fk), then σT,W,f determines a unique element in the symmetric

group S3 of degree 3. See [7] for more detailed definition.

It is easy to see that if two closed face walks W1 and W2 of T containing f are homotopic, then

we have σT,W1,f = σT,W2,f , and that if W is contractible on F 2, then σT,W,f = id. So, by σT,W,f

for each closed face walk W containing f , we can define a homomorphism σT,f : π1(F
2, x0) → S3,

where x0 is a point on F 2 corresponding to f∗ of G∗.

Two homomorphisms σ, σ′ : π1(F
2, x0) → S3 are equivalent if there exists s ∈ S3 with σs = sσ′.

Consequently, the equivalence class of σT,f is independent of the choice of f , and hence we may

regard σT,f as a homomorphism from π(F 2) to S3. Then it is called a monodromy of T and

denoted by σT .

By the definition, T is 3-colorable if and only if σT is trivial, i.e., σT (γ) = id for any γ ∈ π1(F
2).

Recall that the extended intersection system (1) and the crossing system (2) are considered with

modulo 2 and modulo 3, respectively. Actually, if a mosaic G is extended to an even triangulation

T , then for the 3-colorability of T , condition (I) checks the order 2 subgroup of the image of σT ,

while condition (II) does the order 3 one. In fact, we consider an HΞ-face-2-coloring of an even

triangulation for the “order 2 subgroup,” see Subsections 4.3 and 4.4.

4 Lemmas needed for the proofs

In this section, using the notations defined in Section 2, we discuss how to construct 3-colorable

triangulations extended from a given mosaic G by a face rotation system Ξ and an HΞ-subdivided

Z3-orientation of Ŝ(G).

4.1 Good vectors and orientations of Ŝ(G)

Let G be a mosaic on a surface F 2, let Ξ be a face rotation system of G, let W = {γ1, . . . , γg} be

a base of the fundamental group π1(F
2) of F 2 and let {P1, . . . , Pm} be the set of all components
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of Ŝ(G). Suppose that Ŝ(G) has an HΞ-subdivided Z3-orientation O0. Then consider the crossing

system (2) of G with respect to Ξ, W and O0. For each good vector x⃗ = (x1, . . . , xm)T , we define

the HΞ-subdivided Z3-orientation of Ŝ(G), as follows: For 1 ≤ i ≤ m, the orientation of all edges

in Pi are the same as (resp. different from) O0 if xi = 1 (resp. xi = 2). We denote the obtained

HΞ-subdivided Z3-orientation by Ox⃗.

The next two facts for a mosaic G on F 2 with a face rotation system Ξ directly follow from

the definitions.

Fact 12. Let x⃗ = (x1, . . . , xm)T be a good vector. Suppose that Ŝ(G) has an HΞ-subdivided

Z3-orientation O0. Then

Ox⃗ = O0 if and only if x⃗ = (1, . . . , 1)T , and Ox⃗ = O0 if and only if x⃗ = (2, . . . , 2)T .

Furthermore, Ox⃗ and O−x⃗ form an orientation pair of Ŝ(G).

Fact 13. Let W = {γ1, . . . , γg} be a base of the fundamental group π1(F
2) of a surface F 2.

Suppose that Ŝ(G) has an HΞ-subdivided Z3-orientation O0. Then

x⃗ is a good solution of the crossing system (2) of G if and only if for 1 ≤ i ≤ g,

crΞ
(
γi, (Ŝ(G),Ox⃗)

)
≡ 0 (mod 3).

4.2 H-subdivided Z3-orientations and even triangulations

The contents in this section were first mentioned in [25, Section 3], and then appeared in [18,

Subsection 4.2]. For the extension of a mosaic G to a triangulation, we need to add a diagonal in

every quadrangular face of G, from two choices of adding diagonals. In this section, we consider

how to choose it, from a given H-subdivided Z3-orientation of Ŝ(G).

Let G be a mosaic on a surface F 2, let O be an orientation of Ŝ(G), let f be a quadrangular

face of G, and let v1v2v3v4 be the facial walk of f . For i ∈ {1, 2, 3, 4}, let ei = vivi+1, where

v5 = v1. Suppose that in Ŝ(G), the edge e1e3 (resp. e2e4) has the direction from e1 to e3 (resp.

from e2 to e4) by O. In this case, the diagonal of f connecting v1 and v3 is called the O-primary

diagonal at f . Figure 7 is an example of the O-primary diagonal. Adding the O-primary diagonal

to every quadrangular face of G, we get a triangulation T , which is induced by the orientation O
of Ŝ(G). For example, see Figure 8.

Figure 7: The O-primary diagonal at a

quadrangular face f .
Figure 8: The triangulation T induced by the ∅-
subdivided Z3-orientation O.

It was shown in [18, Lemma 18] that “an orientation O of Ŝ(G) induces an even triangulation

if and only if O is an H-subdivided Z3-orientation for some even subgraph H of G.” Therefore, an

H-subdivided Z3-orientation also seems to be a good tool for our purpose. The following lemma

was proved only for quadrangulations, however it is not difficult to modify them for mosaics. We

leave the proof to the readers.

12



Lemma 14. ([18, Lemma 16]) Let G be a mosaic on a surface F 2 and let H be a subgraph of G.

Suppose that both O and O′ are H-subdivided Z3-orientations of Ŝ(G). Then O and O′ induce

the same triangulation if and only if O′ = O or O′ = O.

4.3 H-face-2-colorings

Let T be a triangulation on a surface F 2 and let H be a subgraph of T . An H-face-2-coloring of

T is an assignment of two colors, black or white, to each face of T such that two faces sharing an

edge e in T receive the same color if and only if e ∈ E(H). Note that a proper face-2-coloring of

T is an H-face-2-coloring for H = ∅.

4.4 A lemma on mosaics extendable to a 3-colorable triangulation

Lemma 15. Let G be a mosaic on a surface F 2 that can be extended to a 3-colorable triangulation

T . Then both of the following hold:

(i) For any face rotation system Ξ of G, there is an HΞ-subdivided Z3-orientation that induces

T .

(ii) Furthermore, for any HΞ-subdivided Z3-orientation O that induces T and for any closed

curve γ on F 2, we have crΞ
(
γ, (Ŝ(G),O)

)
≡ 0 (mod 3).

Proof. (i) Let Ξ be a face rotation system of G. We first construct the face rotation system ΞT

of T from Ξ in the following natural way: Let f be a face of G. If f is triangular, then it is also

a face in T , and hence we give the same rotation ξf . Otherwise, i.e., if f is quadrangular in G,

then f is divided into two faces, say h1 and h2, sharing the added diagonal, say e. Then we can

give the rotations ξh1 and ξh2 to h1 and h2, respectively, so that both f ∩ h1 and f ∩ h2 meet ξf .

Then the orientations of e along ξh1 and ξh2 do not coincide, and hence e is coherent in the new

face rotation system. In particular, we have HΞ = HΞT
.

Let c : V (T ) → {0, 1, 2} be a 3-coloring of T . Now we define the assignment φc of two colors,

black or white, to the faces in T , as follows: Note that each face h in T has the face rotation

ξh ∈ ΞT . Let φc(h) be black (resp. white) if the three colors 0, 1, 2 (resp. 0, 2, 1) by c appear on h

in that order along ξh. Then φc is an HΞT
-face-2-coloring of T , as explained below. Let h1 and h2

be two adjacent faces of T and let e be an edge in T shared by them. If e ∈ E(HΞT
), then by the

definition of HΞT
, the face rotations ξh1 and ξh2 coincide at e. So, the order of colors 0, 1, 2 along

ξh1 ∈ ΞT is the same as that along ξh2 ∈ ΞT . Then by the definition of φc, h1 and h2 receive the

same color. By a similar argument, we can deal with the case when e ̸∈ E(HΞT
).

Second we define an orientation O′ of Ŝ(G) as follows:

• Let f be a triangular face of G bounded by three edges e1, e2, e3. Then orient the three edges

fe1, fe2, fe3 in Ŝ(G) to be outgoing (resp., incoming) if f is colored black (resp., white) by

φc.

• Let f be a quadrangular face of G. Then f is divided into two triangular faces, say h1 and

h2, in T by an added diagonal, say e. Since HΞ is a subgraph of G, e ̸∈ E(HΞ). Therefore,

the colors of h1 and h2 by φc are different. By symmetry, we may assume that h1 and h2
are colored by black and white, respectively. Then we orient two edges of Ŝ(G) contained

in f so that both are directed from h2 to h1. (That is, the black triangular face h1 includes

two heads, while the white triangular face h2 includes two tails.)

(See Figure 9 for an example on the Klein bottle.) By definition, we see thatO′ is anHΞ-subdivided

Z3-orientation and induces T . This completes the proof of (i).

13



Figure 9: An HΞ-subdivided Z3-orientation induced by an HΞ-face-2-coloring of T . The bold line

of the left and right side coincide and correspond to HΞ.

(ii). Let O be an HΞ-subdivided Z3-orientation that induces T . Since the orientation O′ defined

in the proof of (i) also induces T , it follows from Lemma 14 that O′ = O or O′ = O. By symmetry,

we may assume that O′ = O. Let Ĝ∗ be the map obtained from G∗ by subdividing each edge of

G∗ whenever it meets an edge in G. Note that Ĝ∗ is also obtained from Ŝ(G) by adding a new

vertex in G∗ in each intersection of edges at a quadrangular face. Therefore, Ĝ∗ = Ŝ(G) if G is a

triangulation. It is easy to see that Ĝ∗ is a bipartite map with bipartition V (G∗) and E(G). We

may regard that edges in Ĝ∗ are naturally oriented by O.

Let γ be a closed curve on F 2, and we consider the crossing number of γ and (Ŝ(G),O).

Note that it is equivalent to crΞ
(
γ, (Ĝ∗,O)

)
since we assumed that any closed curve does not pass

through vertices in G∗. Recall that c is a 3-coloring of T . So c naturally gives a color to each face

of G∗, and hence to each face of Ĝ∗. Whenever γ crosses Ĝ∗, the colors of faces of Ĝ∗ by c are

changed. The next statement is crucial.

Claim 15.1. Let p be a crossing point of γ and (Ŝ(G),O), let u∗ (resp. v∗) be a face of Ĝ∗ through

which γ passes just before (resp. after) p. Then we have

c(v∗) ≡ c(u∗) + crΞ
(
γ, (Ŝ(G),O); p

)
(mod 3).

Proof. Recall that T is obtained from G by adding a diagonal in every quadrangular face f . Here

we may assume that such a diagonal passes through the vertex f∗ in G∗. This assumption implies

that each edge in Ĝ∗ is entirely contained in a triangular face of T . Let e be an edge in Ĝ∗

containing the crossing point p and let h be the face of T including e. Recall also that φc(h) is

black (resp. white) if the three colors 0, 1, 2 (resp. 0, 2, 1) by c appear on h in that order along

ξh ∈ ΞT . We consider only the case where φc(h) is black, since the other case can be symmetrically

shown. Since Ĝ∗ is bipartite, one of the end vertices, say w, of e is contained in V (G∗) and the

other, z, in E(G). By the construction of the HΞ-subdivided Z3-orientation O′ = O, we have the

following two cases. (See Figure 10 for example.)

(a) h is also a face of G and the out-degree of h∗ is three in (Ŝ(G),O).

(b) h is obtained from a quadrangular face of G by adding a diagonal, and includes two heads of

edges in (Ŝ(G),O).

In either case, we see that the edge e is directed from w to z. Furthermore,

if crΞ
(
γ, (Ŝ(G),O); p

)
= +1, then c(v∗) ≡ c(u∗) + 1 (mod 3),

and if crΞ
(
γ, (Ŝ(G),O); p

)
= −1, then c(v∗) ≡ c(u∗)− 1 (mod 3).
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Figure 10: The cases (a) and (b) with crΞ
(
γ, (P,O); p

)
= −1.

This implies the conclusion of Claim 15.1.

Let u∗1, u
∗
2, . . . , u

∗
t , u

∗
t+1 be the sequence of faces of Ĝ∗ such that γ passes through them in that

order, where u∗t+1 = u∗1. For 1 ≤ i ≤ t, let pi be the crossing point of γ and (Ŝ(G),O) such that

pi appears on the boundaries of u∗i and u∗i+1. By Claim 15.1, we have

c(u∗i+1) ≡ c(u∗i ) + crΞ
(
γ, (Ŝ(G),O); pi

)
(mod 3).

Therefore, it follows from (2) in Subsection 2.7 that

c(u∗1) = c(u∗t+1) ≡ c(u∗1) +

t∑
i=1

crΞ
(
γ, (Ŝ(G),O); pi

)
= c(u∗1) + crΞ

(
γ, (Ŝ(G),O)

)
(mod 3).

This implies that crΞ
(
γ, (Ŝ(G),O)

)
≡ 0 (mod 3), which completes the proof.

4.5 A lemma on an HΞ-subdivided Z3-orientation

Lemma 16. Let G be a mosaic on a surface F 2, let Ξ be a face rotation system of G and let

W = {γ1, . . . , γg} be a base of the fundamental group π1(F
2) of F 2. Suppose that Ŝ(G) has an

HΞ-subdivided Z3-orientation O. If

crΞ
(
γi, (Ŝ(G),O)

)
≡ 0 (mod 3)

for 1 ≤ i ≤ g, then O induces a 3-colorable triangulation on F 2.

Proof. Let T be the triangulation on F 2 induced by O. We regard each edge uv in T as two

directed edges (u, v) and (v, u). Then define the mapping β :
{
(u, v) : uv ∈ E(T )

}
→ {1,−1} such

that

β
(
(v, u)

)
= −β

(
(u, v)

)
for any uv ∈ E(T ), as follows:

(a) Suppose that uv ∈ E(T ) − E(G). Then uv is the O-primary diagonal at some quadrangular

face f of G, say, bounded by uxvy, where we suppose that this ordering of the four vertices

is along the rotation ξf . If the directed edges of
(
Ŝ(G),O

)
are from ux to vy and from vx to

uy, then let β
(
(u, v)

)
= +1 and β

(
(v, u)

)
= −1; if the directions are from vy to ux and from

uy to vx, then let β
(
(u, v)

)
= −1 and β

(
(v, u)

)
= +1.
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Figure 11: Modifying (u, v) in the cases (a) and (c). The thick black arrows represent directed

edges (u, v) with β
(
(u, v)

)
= +1.

(b) Suppose that uv ∈ E(G) − E(HΞ). Let f1 and f2 be the two faces in G sharing the edge

uv. Since uv ̸∈ E(HΞ), the face rotations ξf1 and ξf2 do not coincide at uv. By symmetry,

we may assume that the direction (u, v) coincides with ξf1 . (So, the direction (v, u) coincides

ξf2 .) Since O is an HΞ-subdivided Z3-orientation, it follows from (H2) in Definition 5 that the

in-degree and the out-degree of uv in
(
Ŝ(G),O

)
is both 1. If the directed edge of

(
Ŝ(G),O

)
incoming to uv is contained in the face f1 (that is, the directed edge outgoing from uv is

contained in the face f2), then let β
(
(u, v)

)
= +1 and β

(
(v, u)

)
= −1; if the directed edge of(

Ŝ(G),O
)
outgoing from uv is contained in the face f1 (that is, the directed edge incoming to

uv is contained in the face f2), then let β
(
(u, v)

)
= −1 and β

(
(v, u)

)
= +1.

(c) Suppose that uv ∈ E(HΞ). Then it follows from (H3) in Definition 5 that the out-degree of

uv in
(
Ŝ(G),O

)
is 0 or 2. Let f1, f2 be the two faces of G sharing uv. Since uv ∈ E(HΞ),

the two orientations ξf1 and ξf2 coincide at the edge uv. By symmetry, we may assume that

it is directed from u to v. If the out-degree of uv in
(
Ŝ(G),O

)
is 0, then let β

(
(u, v)

)
= +1

and β
(
(v, u)

)
= −1; if the out-degree of uv in

(
Ŝ(G),O

)
is 2, then let β

(
(u, v)

)
= −1 and

β
(
(v, u)

)
= +1.

Note that the directed edge (u, v) passes through a crossing point of two edges of (Ŝ(G),O) (in

the case (a)) or a vertex of Ŝ(G) (in the cases (b) and (c)). By this reason, we cannot directly

apply the definition of the crossing number of (u, v) from (Ŝ(G),O) as in Subsection 2.7. However,

modifying (u, v) slightly by homotopic shift, we are allowed to do that. (See Figure 11 for example

in the cases (a) and (c).) Notice that in either case, the choice of a face to which (u, v) moves does

not change the crossing number. By the definition, we have

β
(
(u, v)

)
≡ crΞ

(
(u, v), (Ŝ(G),O)

)
(mod 3) for any edge uv in T . (3)

Using the mapping β, we define the assignment c : V (T ) → {0, 1, 2} inductively as follows:

(i) Let u0 be a fixed vertex in T . Then set c(u0) = 0.

(ii) Let v be a vertex in T which has not yet been assigned a color by c, but a neighbor u of v

already has a color. Then define

c(v) ≡ c(u) + β
(
(u, v)

)
(mod 3).
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Since T is connected, the above definition of c gives the assignment to all vertices in T . We prove

that c is actually a 3-coloring of T . Before that, we show the next claim, which is crucial in our

proof.

Claim 16.1. For any directed cycle
−→
W of T , we have∑

(u,v)∈E(
−→
W )

β
(
(u, v)

)
≡ 0 (mod 3).

Proof. Let
−→
W be a directed cycle of T . We can regard

−→
W as a closed curve on F 2. So, since

W = {γ1, . . . , γg} is a base of the fundamental group π1(F
2) of F 2, there exists an integer r such

that
−→
W is homotopic to γ = η1 ∗ · · · ∗ ηr, where for 1 ≤ i ≤ r, ηi = γj or ηi = −γj for some

1 ≤ j ≤ g. By the assumption of Lemma 16, we have

crΞ
(
ηi, (Ŝ(G),O)

)
≡ 0 (mod 3)

for 1 ≤ i ≤ r. Therefore,

crΞ
(
γ, (Ŝ(G),O)

)
=

r∑
i=1

crΞ
(
ηi, (Ŝ(G),O)

)
≡ 0 (mod 3).

It follows from Lemma 9 and (3) that∑
(u,v)∈E(

−→
W )

β
(
(u, v)

)
≡

∑
(u,v)∈E(

−→
W )

crΞ
(
(u, v), (Ŝ(G),O)

)
= crΞ

(−→
W, (Ŝ(G),O)

)
≡ crΞ

(
γ, (Ŝ(G),O)

)
≡ 0 (mod 3).

This completes the proof of Claim 16.1.

Now we are ready to prove that c is a 3-coloring of T . Suppose contrary that there is an edge

uv in T such that c(u) = c(v). Let u0, u1, . . . , us be the path in T with us = u such that the vertex

ui−1 is used to define c(ui) for 1 ≤ i ≤ s. Similarly, let v0, v1, . . . , vt be the path in T with vt = v

such that the vertex vj−1 is used to define c(vj) for 1 ≤ j ≤ t, where we choose v0 = u0. Let r be

the maximum integer such that ur = vr. Since u0 = v0, such an integer r must exist. It follows

from the definition of c that

c(us) ≡ c(ur) +

s∑
i=r+1

β
(
(ui−1, ui)

)
,

and c(vt) ≡ c(vr) +

t∑
j=r+1

β
(
(vj−1, vj)

)
(mod 3).

Therefore, since c(us) = c(u) = c(v) = c(vt) and c(ur) = c(vr), we have

0 = c(us)− c(vt) ≡
s∑

i=r+1

β
(
(ui−1, ui)

)
−

t∑
j=r+1

β
(
(vj−1, vj)

)
≡

s∑
i=r+1

β
(
(ui−1, ui)

)
+

t∑
j=r+1

β
(
(vj , vj−1)

)
(mod 3). (4)

Let
−→
W be the directed cycle, defined as

−→
W = ur, ur+1, . . . , us, vt, vt−1, . . . , vr+1, vr.

17



Recall that vr = ur, us = u, vt = v and uv ∈ E(T ), and hence
−→
W is indeed a directed cycle in T .

By Claim 16.1, we have ∑
(u′,v′)∈E(

−→
W )

β
(
(u′, v′)

)
≡ 0 (mod 3).

However, it follows from (4) that

β
(
(us, vt)

)
≡

∑
(u′,v′)∈E(

−→
W )

β
(
(u′, v′)

)
−

(
s∑

i=r+1

β
(
(ui−1, ui)

)
+

t∑
j=r+1

β
(
(vj , vj−1)

))
≡ 0 (mod 3),

which contradicts that β
(
(us, vt)

)
= +1 or −1. Therefore, c(u) ̸= c(v) for any edge uv in T , and

hence c is a 3-coloring of T .

Remark 5: For any 3-colorable triangulation, a 3-coloring is unique, up to permutations of

colors. Thus, the proof of Lemma 16 also shows that the 3-coloring c is well-defined; it does not

depend on the choice of the starting vertex u0 in (i) and the order of vertices to which we color in

(ii).

5 Proofs of Theorems 10 and 11

Proof of Theorem 10. We first prove the “only if” part. Suppose that G is extended to a 3-

colorable triangulation T . Let Ξ be a face rotation system of G. By Lemma 15(i), Ŝ(G) has an

HΞ-subdivided Z3-orientation O which induces T , and by Lemma 8, G satisfies the orientizing

condition. On the other hand, by Fact 13 and Lemma 15(ii), the crossing system (2) of G has a

good solution. These complete the proof of the “only if” part.

Next we prove the “if” part. Suppose that G satisfies the orientizing condition. Let Ξ be a face

rotation system of G. By Lemma 8, Ŝ(G) has an HΞ-subdivided Z3-orientation. Since the crossing

system (2) of G has a good solution x⃗, Fact 13 implies that the HΞ-subdivided Z3-orientation Ox⃗

satisfies

crΞ
(
γi, (Ŝ(G),Ox⃗)

)
≡ 0 (mod 3)

for 1 ≤ i ≤ g. Therefore, it follows from Lemma 16 that Ox⃗ induces a 3-colorable triangulation.

This completes the proof of the “if” part.

Proof of Theorem 11. Suppose that G satisfies the orientizing condition. By Lemma 8, Ŝ(G) has

an HΞ-subdivided Z3-orientation, say O0, where Ξ is a face rotation system of G. Furthermore,

assume that the crossing system (2) of G with respect to Ξ, W and O0 has exactly n good solutions,

where W is a base of the fundamental group π1(F
2) of F 2.

First, we show the upper bound of the number of distinct 3-colorable triangulations extended

from G. For that purpose, it suffices to prove that for each 3-colorable triangulation T extended

from G, there are two good solutions of the crossing system (2) of G, which corresponds to T .

It follows from Lemma 15(i) that there exists an HΞ-subdivided Z3-orientation O of Ŝ(G) that

induces T . By Lemma 14, O also induces T . It follows from Lemma 15(ii) that for any closed

curve γ on F 2, we have crΞ
(
γ, (Ŝ(G),O)

)
≡ 0 (mod 3). In particular,

crΞ
(
γi, (Ŝ(G),O)

)
≡ 0 (mod 3)

for 1 ≤ i ≤ g. Then by Fact 13, there exists a good solution x⃗ of the crossing system (2) of G

with respect to Ξ, W and O0 such that O = Ox⃗. The same holds also for O, which corresponds

to the good solution −x⃗ by Fact 12. Thus, there are two good solutions of the crossing system (2)
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of G, which corresponds to T . By Lemma 14, for two distinct 3-colorable triangulations T1 and

T2 extended from G, the pairs of corresponding two good solutions are disjoint. This shows that

the number of distinct 3-colorable triangulations extended from G is at most n/2.

Conversely, we show the lower bound. Suppose that the crossing system (2) of G has a good

solution x⃗. By Fact 13, we see that the HΞ-subdivided Z3-orientation Ox⃗ of Ŝ(G) satisfies that

crΞ
(
γi, (Ŝ(G),Ox⃗)

)
≡ 0 (mod 3)

for 1 ≤ i ≤ g. By Lemma 16, Ox⃗ induces a 3-colorable triangulation. Suppose that for two good

solutions x⃗ and y⃗ of the crossing system (2) of G, the HΞ-subdivided Z3-orientations Ox⃗ and Oy⃗

of Ŝ(G) induce the same 3-colorable triangulation. It follows from Lemma 14 that Ox⃗ = Oy⃗ or

Ox⃗ = Oy⃗, and hence x⃗ = y⃗ or x⃗ = −y⃗ by Fact 12. This shows that exactly two good solutions

create the same 3-colorable triangulation extended from G, and hence the number of distinct

3-colorable triangulations extended from G is at least n/2.

These complete the proof of Theorem 11.

6 Remarks and corollaries

In this section, we show that our main theorems improve several known results and have an

application to polychromatic coloring.

6.1 The planar case

Let G be a mosaic on the plane. By the definition of the orientizing condition, the extended

intersection system (1) of G has a solution if and only if S(G) is bipartite. Furthermore, in the

planar case, the crossing matrix CM(G) of G is degenerate, and hence any good vector is a good

solution of the crossing system (2) of G. Therefore, by Theorem 10, a mosaic G on the plane can

be extended to 3-colorable triangulation if and only if S(G) is bipartite. (This fact was pointed

out by Hoffmann-Ostenhoff [9].)

Furtheremore, there are 2m good vectors, where m is the number of components of Ŝ(G). So,

by Theorem 11, G can be extended to exactly 2m/2 = 2m−1 distinct 3-colorable triangulations.

This is indeed equivalent to [18, Theorem 13] and [25, Theorem 6]. To be exact, those considered

the extension to “even” triangulations instead of 3-colorable ones, which are equivalent in the

planar case by Fact 2.

6.2 The case of the projective plane

We put a remark to the case of the projective plane N1, from a topological point of view. Let [γ1]

be the non-identity element of π1(N1), where γ1 is homotopic to a1 in Figure 2. The important

property for γ1 is that “γ1 ∗ γ1 is contractible.” Therefore, it follows from Lemma 9 that for any

HΞ-subdivided Z3-orientation O of Ŝ(G) and any component Pj of Ŝ(G), we have

2 · crΞ
(
γ1, (Pj ,O)

)
≡ 0 (mod 3),

which directly implies

crΞ
(
γ1, (Pj ,O)

)
≡ 0 (mod 3).

So, all entries of the crossing matrix CM(G) of G are zero, and hence any good vector x⃗ is a good

solution of it. Therefore, we have the following corollary of Theorem 10.

Corollary 17. Let G be a mosaic of the projective plane. Then G can be extended to a 3-colorable

triangulation if and only if G satisfies (I) the orientizing condition.
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Furthermore, Theorem 11 implies that if G satisfies the orientizing condition, then G can be

extended to exactly 2m−1 distinct 3-colorable triangulations, wherem is the number of components

of Ŝ(G).

Remark 6: The property in this subsection holds also for nonorientable surfaces other than

the projective plane. Let [γ0] be the element of π1(Nk), where γ0 is homotopic to a1 ∗ . . . ak in

Figure 2. (Note that γ0 corresponds to an orientizing subgraph.) Then it is well-known that

“γ0 ∗ γ0 is separating,” i.e. Nk \ (γ0 ∗ γ0) is not arcwise connected. Though we have only shown

in Lemma 9 that crΞ
(
γ, (Pj ,O)

)
≡ 0 (mod 3) for any contractible curve γ, the same holds also

for any separating curve γ. Therefore, the same argument implies that for any HΞ-subdivided

Z3-orientation O of Ŝ(G) and any component Pj of Ŝ(G), we have

crΞ
(
γ0, (Pj ,O)

)
≡ 0 (mod 3).

Thus, the rank of the crossing matrix CM(G) is always at most k − 1 if G is a mosaic of the

nonorientable surface Nk.

6.3 The case of quadrangulations

Now we consider quadrangulations G on a surface F 2. In this case, the S-walk dual S(G) of G

consists of no vertices and only S-walks. Therefore, trivially c⃗ = 0⃗ for any base C of the cycle

space of Ŝ(G). In fact, the cycle space of Ŝ(G) has the unique base, which is the set of all S-walks

of G∗.

Let S be an S-walk of G∗ and suppose that S is contractible. Since S is contractible, it

intersects with any even subgraph of G even number of times. Furthermore, for any closed curve

γ on F 2, the crossing number of γ and (S,O) is zero in total, where O is an orientation of S.

This fact implies that if all S-walks of G∗ is contractible, then all entries of the intersection

matrix IM(G) and the crossing matrix CM(G) are zero. Thus, any vector is a solution of the

extended intersection system (1) of G, and any good vector is a good solution of the crossing

system (2) of G. This and Theorem 10 imply the next corollary.

Corollary 18. ([17, Theorem 1]) Let G be a quadrangulation on any surface. If all S-walks are

contractible, then G can be extended to a 3-colorable triangulation.

Furthermore, consider the projective planar case. Let G be a quadrangulation on the projective

plane N1 and let Ξ be a face rotation system of G. In this case, the intersection matrix IM(G)

is an (ℓ × 1)-matrix, where ℓ is the number of S-walks of G∗. Suppose that G can be extended

to a 3-colorable triangulation. By Theorem 10, G satisfies the orientizing condition, that is, the

vector 1⃗ = (1)T is a solution of the extended intersection system (1) of G. This implies that

IM(G) = IM(G)⃗1 = c⃗ = 0⃗, which means that each S-walk of G∗ meets W̃1 an even number of

times, where {W̃1} is a base of the Z2-homology space of G. Recall that W̃1 is obtained from a

spanning closed walk W1 of G that is homotopic to an essential curve on N1. Note that for two

closed curves on N1, they intersect odd number of times if and only if both are essential. Therefore,

each S-walk of G∗ must be contractible. This gives a proof of the converse of Corollary 18 for the

projective planar case. Namely:

Corollary 19. ([17, Theorem 1]) Let G be a quadrangulation on the projective plane. Then G

can be extended to a 3-colorable triangulation if and only if each S-walk of G∗ is contractible.

6.4 Extension of 3-colorable quadrangulations

In Section 1, we posed the question whether every 3-colorable quadrangulation can be extend to a

3-colorable triangulation. Actually, Theorem 10 gives the answer NO. Consider quadrangulations
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G on an orientable surface with only one S-walk of G∗ such that the edge-width of G is high enough.

(See [16, Pages 129–130] for the definition of the edge-width.) By the result by Hutchinson [12],

such quadrangulation G is 3-colorable. However, we can see that if the crossing number of γi and

the unique S-walk with some orientation is not zero modulo 3, where γi is a closed curve in a base

of the fundamental group π(F 2), then trivially the crossing system (2) of G does not have a good

solution. Thus, it follows from Theorem 10 that G cannot be extend to a 3-colorable triangulation.

On a non-orientable surface, it is known that a quadrangulation G is 3-colorable if the edge-width

of G is high enough and the length of an orientizing closed walk of G is even. Then the same kind

of examples do exist.

6.5 The case of triangulations

Let G be a triangulation on a surface. In this case, G can be extended to 3-colorable triangulation

if and only if G itself is 3-colorable. Therefore, Theorem 10 (and also Theorem 11) gives us how

to check whether a triangulation G is 3-colorable. To be exact, this is equivalent to check the

monodoromy σG of G, see Remark 4 in Section 3.

6.6 Application to polychromatic coloring

A polychromatic k-coloring of a map G on a surface is a (not necessarily a proper) k-coloring of

G such that all k colors appear on the vertices of the facial cycle of any face of G. Horev and

Krakovski [11] showed that every planar subcubic map has a proper polychromatic 3-coloring,

except for the complete graph K4 on 4 vertices and a subdivision of K4. Alon et al. [1] showed

that every planar map with girth at least 6 has a (not necessarily proper) polychromatic 3-coloring.

There are also some results of proper polychromatic 4-colorings of maps [10, 15, 19]. It is easy to

see that a mosaic G has a proper polychromatic 3-coloring if and only if G can be extended to a

3-colorable triangulation. Therefore, Theorem 10 implies the following corollary.

Corollary 20. Let G be a mosaic on a surface F 2. Then G has a proper polychromatic 3-coloring

if and only if G satisfies the orientizing condition and the crossing system (2) of G has a good

solution.

Furthermore, any results in this paper can be regarded as those for proper polychromatic

3-colorings.
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