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Abstract

A triangulation (resp., a quadrangulation) on a surface F is a map of a loopless graph

on F with each face bounded by a closed walk of length three (resp., four). It is easy to

see that every triangulation on any surface has a spanning quadrangulation. Kündgen and

Thomassen [16] proved that every even triangulation G (i.e., each vertex has even degree) on

the torus has a spanning non-bipartite quadrangulation, and if G has sufficiently large edge

width, then G also has a bipartite one. In this paper, we prove that an even triangulation G

on the torus admits a spanning bipartite quadrangulation if and only if G does not have K7

as a subgraph, and moreover, we give some other results for the problem.
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1 Introduction

A surface F is a connected compact 2-dimensional manifold without boundary. By the classifica-

tion of surfaces, F is either an orientable surface of genus g ≥ 0, denoted by Sg, or a nonorientable

surface of genus k > 0, denoted by Nk. Note that S0 is the sphere, N1 is the projective plane

and S1 is the torus. A closed curve γ on F is essential if γ does not bound a 2-cell region on F.
Otherwise, γ is contractible.

Let G be a graph, and let V (G) and E(G) denote the vertex set and the edge set of G,

respectively. A k-cycle is a cycle of length k, and a k-vertex is a vertex of degree k. A vertex

k-coloring is a map c : V (G) → {1, . . . , k}, and c is proper if c(x) ̸= c(y) for any xy ∈ E(G). The

chromatic number of G, denoted by χ(G), is the minimum integer k such that G is k-colorable.

An edge k-coloring c : E(G) → {1, . . . , k} is defined similarly to a vertex k-coloring. A graph is

k-colorable if it admits a proper vertex k-coloring.

Let G be a map on a surface F, that is, a 2-cell embedding of a loopless graph on F. A cycle

C (or a closed walk) of G is essential (resp., contractible) if C can be regarded as an essential

(resp., contractible) closed curve on F. The link of a vertex v of G is the boundary walk of the

2-cell region formed by all faces incident to v. We define a triangulation as a map with each face

bounded by a closed walk of length 3, and a quadrangulation as a map with each face bounded

by a closed walk of length 4. The edge width of G, denoted by ew(G), is the length of a shortest

essential cycle in G. A graph in which all vertices have even degree is even.

Let us begin with the following assertion:

Proposition 1. Every triangulation on any surface admits a spanning quadrangulation.
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Since the dual map G∗ of a triangulation G is easily verified to be a 2-edge-connected cubic

graph, G∗ has a perfect matching M∗, by Petersen’s Theorem [26]. Translating this to G, we see

that G has a spanning quadrangulation Q−M , where M ⊂ E(G) is the edge set corresponding

to M∗.

Kündgen and Thomassen [16] asked whether the bipartiteness of Q can be controlled in

Proposition 1, that is, for a given triangulation G on a surface F,

(i) does G admit a spanning bipartite quadrangulation?

(ii) does G admit a spanning non-bipartite quadrangulation?

(iii) does G admit both of them?

They proved the following result for even triangulations on the torus:

Theorem 2 (Kündgen and Thomassen [16]). Let G be an even triangulation on the torus. Then

G has a spanning non-bipartite quadrangulation. Moreover, there exists an integer N such that

if the edge width of G is at least N , then G has a spanning bipartite quadrangulation.

In this paper, we characterize even triangulations on the torus having a spanning bipartite

quadrangulation, as follows:

Theorem 3. An even triangulation G on the torus has a spanning bipartite quadrangulation if

and only if G does not have K7 as a subgraph.

Since any triangulation of the torus withK7 as a subgraph has edge width exactly 3, Theorem

3 shows that N = 4 suffices in Theorem 2, and it is best possible.

We also give a proof to the following two theorems, by using some known results on colorings

of graphs on surfaces. The former has been already proved by Kündgen and Thomassen [16],

but our proof strategy is different (and shorter).

Theorem 4 (Kündgen and Thomassen [16]). Let G be an even triangulation on the projective

plane. If G is 3-chromatic, then every spanning quadrangulation of G is bipartite. On the

other hand, if G is not 3-colorable, then G has both a spanning bipartite quadrangulation and a

spanning non-bipartite quadrangulation.

Theorem 5. For any non-spherical surface F other than the projective plane, there exists an

integer N(F) such that every even triangulation on F with edge width at least N(F) has both a

spanning bipartite quadrangulation and a spanning non-bipartite quadrangulation.

In Section 2, we introduce motivations to deal with the problem. In Section 3, we give a

proof of Theorem 3. Finally, in Section 4, we give a proof of Theorems 4 and 5.

2 Motivation

In this section, we describe motivation of our research from several points of view.

1. Spanning bipartite subgraphs. For a given graph G, finding a subgraph T of G with

certain properties seems to be interesting. One of the typical properties is the bipartiteness with

the maximum number of edges. This problem was first considered by Erdős [6] and gave the

result that every graph G has a spanning bipartite subgraph H with |E(H)| ≥ 1
2 |E(G)|. So,

if a triangulation G on a surface F has a spanning bipartite quadrangulation Q, then we have

|E(Q)| = 2
3 |E(G)|, by Euler’s formula, which is much better than the general bound.
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2. Perfect matchings of 3-regular maps. A spanning quadrangulation Q in a triangulation

G corresponds to a perfect matching M∗ in the dual G∗ of G. More precisely, for a triangulation

G, there is a bijection between the spanning quadrangulations in G and the perfect matchings

in G∗. It is known that the number of perfect matchings of a 2-edge-connected cubic graph H

is exponential in the order of H [7]. Then because of the existence of such a huge number of

perfect matchings, we expect that there exists a perfect matching of G∗ that corresponds to a

spanning bipartite quadrangulation, and respectively a spanning non-bipartite quadrangulation.

Actually, this thought is true for many cases (see Theorems 2–5), but surprisingly false for a few

cases, namely even triangulations on the torus containing K7 as a subgraph (Theorem 3) and

3-chromatic even triangulations on the projective plane (Theorem 4).

3. Grünbaum colorings of triangulations. It is known that if a triangulation G has a

proper vertex 4-coloring c : V (G) → {1, 2, 3, 4}, then the decomposition{
E1,2 ∪ E3,4, E1,3 ∪ E2,4, E1,4 ∪ E2,3

}
of E(G) gives an edge 3-coloring cE of G such that every face receives three distinct colors on

their boundary edges, where Ei,j denotes the set of (i, j)-edges for any distinct i, j ∈ {1, 2, 3, 4},
i.e., ones whose ends are colored by colors i and j. Such an edge 3-coloring of G is a Grünbaum

coloring [9]. (See related results [1, 15]). Note that a Grünbaum coloring of a triangulation G

can naturally be interpreted into a proper edge 3-coloring c∗ of the dual G∗ of G.

Hence, taking each color class of c∗ as a perfect matching of G∗, we have the following result:

Proposition 6 (Kündgen and Thomassen [16]). Let G be a triangulation on a surface F. Then

G has a proper vertex 4-coloring if and only if G has a Grünbaum coloring such that any two

colors induce a spanning bipartite quadrangulation of G.

Hence it seems to be an interesting problem to find a spanning “bipartite” quadrangulation

in a non-4-colorable triangulation G.

4. Polychromatic colorings of graphs on surfaces. A polychromatic k-coloring of a map

G on a surface [2] is a vertex k-coloring c (which is not necessarily proper) such that all k colors

appear in the boundary vertices of each face of G. The polychromatic number of a map G

is the maximum integer k such that G admits a polychromatic k-coloring. For several classes

of maps, the polychromatic number are studied [10, 11, 14]. In particular, the authors of the

present paper characterized quadrangulations on surfaces with polychromatic number 3 and 4,

respectively [23, 24]. However, if we consider the problem for triangulations, then a triangulation

with polychromatic number 3 is nothing but a 3-colorable triangulation, and hence an interesting

problem for triangulations is to consider a polychromatic 2-coloring. For this problem, we see

that the following holds:

Proposition 7. A triangulation G on a surface F has a polychromatic 2-coloring if and only if

G has a spanning bipartite quadrangulation.

The “if” part is obvious (since a bipartition can be a polychromatic 2-coloring), and the

“only if” part is explained as follows: If G has a polychromatic 2-coloring, then removing all

edges whose ends have the same color, we get a spanning bipartite quadrangulation. On the other

hand, Kündgen and Ramamurthi [17] presented the following conjecture: For every non-spherical

surface F, there exists a constant N = N(F) such that every triangulation on F with edge width

at least N has a polychromatic 2-coloring. Theorem 5 will give the affirmative solution for even

triangulations.

5. Quadrangulations extended to an even triangulation. Hoffmann and Kriegel [13]

proved that every plane quadrangulation G can be extended to an even triangulation by adding
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a single edge to each face of G. After that, Zhang and He [29] enumerated the plane even

triangulations obtained from a given plane quadrangulation, and gave a lower bound for the

number of even triangulations obtained from a quadrangulation on orientable surfaces. For this

problem, the authors of the present paper [22] completely gave the exact number for such even

triangulations on all surfaces, orientable or nonorientable.

The problem in this paper on a quadrangulation Q obtained from an even triangulation G

seems to be an inverse problem of the above-mentioned problem, and it will be meaningful to

consider which property of Q can be obtained from G. So we consider the bipartiteness of Q in

this paper.

3 The toroidal case

In this section, we prove Theorem 3. We first prove that Theorem 3 holds for all 6-regular maps

on the torus in the following subsection, and then all even triangulations by using a generating

theorem of them.

3.1 6-regular maps on the torus

In this subsection, we deal with 6-regular maps on the torus. A characterization of those maps

was given by Altshuler [3], as follows:

Prepare a grid of m rows and n columns. We label the vertex on the ith row and the

jth column by (i, j). The 6-regular right-diagonal grid G[m × n] is the graph with vertex set

V = {(i, j)|1 ≤ i ≤ m, 1 ≤ j ≤ n}, where the neighbors of (i, j) are (i− 1, j − 1), (i, j − 1), (i−
1, j), (i+ 1, j), (i, j + 1), (i+ 1, j + 1) with (0, j) = (m, j), (m+ 1, j) = (1, j), (i, 0) = (i, n) and

(i, n + 1) = (i, 1). It is obvious that G[m × n] is 6-regular and can be embedded on the torus.

Let 1 ≤ k ≤ m be an integer. The 6-regular right-diagonal shifted grid G[m×n, k] is the twisted

G[m× n], that is, the vertex (i, n) is adjacent to (i− k + 1, 1) and (i− k + 2, 1) instead of (i, 1)

and (i+ 1, 1) for i ∈ {1, . . . ,m}. (See Figure 1. The top and the bottom, the left and the right

are, respectively, identified.) Note that G[m× n] is the same as G[m× n, 1]. It is obvious that

for any positive integers m,n and 1 ≤ k ≤ m, G[m× n, k] is 6-regular and can be embedded on

the torus.

Theorem 8. (Altshuler [3]) Every 6-regular map on the torus is isomorphic to a 6-regular

right-diagonal shifted grid G[m× n, k] for some positive integers m,n and k.

Figure 1: A 6-regular right-diagonal shifted grid G[m× n, k].

In addition, all 4-colorable 6-regular maps on the torus have been completely determined, as

in the following theorem:
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Theorem 9. ([5, 27]) Every 6-regular toroidal map is 4-colorable, with the following exceptions;

• G ∈
{
G[3× 3, 2], G[3× 3, 3], G[5× 3, 2], G[5× 3, 3], G[5× 5, 3], G[5× 5, 4]

}
.

• G = G[p× 2, 1] with p odd.

• G = G[p× 1, r+2] such that p = 2r+2, 2r+3, 3r+1 or 3r+2 and p is not divisible by 4.

• G = G[p× 1, 4] such that p is not divisible by 4.

• G = G[p×1, r+2] with (r, p) ∈
{
(3, 13), (3, 17), (3, 18), (3, 25), (4, 17), (6, 17), (6, 25), (6, 33),

(7, 19), (7, 25), (7, 26), (9, 25), (10, 25), (10, 26), (10, 37), (14, 33)
}
.

Using Theorems 8 and 9, we prove the following:

Lemma 10. Every 6-regular triangulation on the torus has a spanning non-bipartite quadran-

gulation. Every 6-regular triangulation on the torus, except for K7, has a spanning bipartite

quadrangulation.

Proof. Let G be a 6-regular triangulation. By Theorem 8, it is represented by G[m× n, k].

Non-bipartite quadrangulations: Ifm is odd or n+k is even, we get a spanning non-bipartite

quadrangulation by deleting all diagonal edges of G. Otherwise, we get a spanning non-bipartite

quadrangulation by deleting all but the first column diagonal edges and horizontal edges in the

first column of G.

Bipartite quadrangulations: Suppose that G is not isomorphic to K7. If G is 4-colorable,

then G has a spanning bipartite quadrangulation, by Proposition 6. Otherwise, we only have to

consider the exceptions in Theorem 9. We first consider the following three cases.

• n is even.

We get a spanning bipartite quadrangulation by deleting all vertical edges of G.

• n is odd, m is even, and k is odd.

We get a spanning bipartite quadrangulation by deleting all horizontal edges of G.

• n is odd, m is even, and k is even.

We get a spanning bipartite quadrangulation by deleting all diagonal edges of G.

Therefore we may assume that both n and m are odd. The remaining cases are listed below.

• (m,n, k) = (3, 3, 2), (3, 3, 3), (5, 3, 2), (5, 3, 3), (5, 5, 3) or (5, 5, 4).

See Figure 7 in Appendix.

• n = 1 and k is odd.

See the left side of Figure 8 in Appendix.

• (m,n, k) = (2r + 3, 1, r + 2) or (3r + 1, 1, r + 2) for some even integer r.

If r = 2, both are K7. Otherwise, see the middle and the right side of Figure 8 in Appendix.

• (m,n, k) = (m, 1, 4) for some odd integer m.

Let m ≥ 5 be an odd integer represented by 4l + c, where c is 1 or 3.

– If c = 1, then let X = {4i+2, 4i+3|0 ≤ i ≤ l−1}∪{1} and Y = {4i, 4i+1|1 ≤ i ≤ l}.
We can take a spanning quadrangulation so that its bipartition is X and Y .

– If m = 7 (so c = 3 and l = 1), then G is isomorphic to K7.
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– If c = 3 and l ≥ 2, then let X = {4i, 4i + 1|2 ≤ i ≤ l} ∪ {1, 2, 3, 7} and Y =

{4i+ 2, 4i+ 3|2 ≤ i ≤ l} ∪ {4, 5, 6}. We can take a spanning quadrangulation so that

its bipartition is X and Y .

• (m,n, k) = (17, 1, 6), (17, 1, 8), (25, 1, 8), (33, 1, 8), (25, 1, 12), (37, 1, 12) or (33, 1, 16).

It is easy to see that G[25 × 1, 12] is isomorphic to G[5 × 5, 3] and that G[33 × 1, 16] is

isomorphic to G[11 × 3, 10]. Then see Figure 9 in Appendix, and see Figure 10 for other

cases.

Hence the proof is completed.

3.2 A generating theorem for even triangulations on the torus

Let G be an even triangulation on a surface F and let v be a 4-vertex in G with link v1v2v3v4. A

4-contraction of v at {v1, v3} is to remove v, identify v1 and v3, and replace two pairs of double

edges by two single edges, respectively. The inverse operation of a 4-contraction is a 4-splitting.

(See the left side of Figure 2.) Let w be a 2-vertex in G and let w1 and w2 be the neighbors of

w. A 2-vertex removal of w is to remove w and identify the two edges w1w2 which bound the

two faces incident to w. The inverse operation of a 2-vertex removal is a 2-vertex addition. (See

the right side of Figure 2.)

The following theorem is a generating theorem for even triangulations on the torus, which

describes how to generate them.

Theorem 11. (Matsumoto et al. [18]) Every even triangulation on the torus can be obtained

from one of the 27 maps in Figure 3 or a 6-regular triangulation by a sequence of 4-splittings

and 2-vertex additions.

Figure 2: A 4-splitting and a 2-vertex addition.

The existence of spanning bipartite quadrangulations in even triangulations can be preserved

by the two operations, as described in the following lemma.

Lemma 12. Let G be an even triangulation on a surface F, and let G′ be an even triangulation

on F obtained from G by either a 4-splitting or a 2-vertex addition. If G has a spanning bipartite

quadrangulation, then so does G′. If G has a non-bipartite one, then so does G′.

Proof. Let Q be a spanning quadrangulation of G and let M = E(G)\E(Q). We define the edge

set M ′ ⊂ E(G′) such that Q′ = G′ −M ′ is a spanning quadrangulation, as follows.

Suppose first that G′ is obtained from G by a 4-splitting of a vertex v in G. Let v1v2v3v4
be the link of the new vertex v′ in G′ such that the 4-contraction of v′ at {v2, v4} yields G. By

symmetry, we may assume that one of the following holds, and in each case, define the edge set

M ′ as follows:

• vv1, vv3 ̸∈ M . Then let M ′ = M ∪ {v′v1, v′v3}.
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Figure 3: The 27 even triangulations on the torus, where in each map, the top and the bottom,

the left and the right are, respectively, identified.

• vv1 ̸∈ M and vv3 ∈ M . Then let M ′ =
(
M\{vv3}

)
∪ {v′v1, v2v3, v3v4}.

• vv1, vv3 ∈ M . Then let M ′ =
(
M\{vv1, vv3}

)
∪ {v1v2, v2v3, v3v4, v4v1}.

Next suppose that G′ is obtained from G by a 2-vertex addition in G. Let v1v2 be the

neighbors of the new vertex v′ in G′, and let e1, e2 be the two multiple edges forming the link of

v′. Then one of the following holds, and in each case, define M ′ as follows:

• v1v2 ̸∈ M . Then let M ′ = M ∪ {v′v1}.

• v1v2 ∈ M . Then let M ′ =
(
M\{v1v2}

)
∪ {e1, e2}.

In this way, we can construct a spanning quadrangulation Q′ = G′ −M ′ in G′ from Q in G.

It is easy to see that the bipartiteness is preserved in the process to obtain Q′ from Q.

Lemma 13. All even triangulations shown in Figure 3 have both a spanning bipartite quadran-

gulation and a spanning non-bipartite quadrangulation.

Proof. See Figures 5 and 6 in Appendix.

By using the reductions (4-contractions and 2-vertex removals), we obtain another proof of

the first assertion in Theorem 2, that is, every even triangulation on the torus has a spanning

non-bipartite quadrangulation; First, all “minimal” even triangulations (the 27 ones in Figure

3 and 6-regular ones) have it, as shown in Lemmas 10 and 13. Then by Theorem 11, all other

even triangulations can be constructed from them by a sequence of 4-splittings and 2-vertex

additions, through which the existence of a spanning non-bipartite quadrangulation is preserved

by Lemma 12.

3.3 Lemmas for the proof of Theorem 3

Before proceeding to a proof of Theorem 3, we put two more lemmas and their proofs in this

subsection.
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Lemma 14. Let G be an even triangulation on a surface F. Then for any vertex 2-coloring

c : V (G) → {1, 2}, G has an even number of monochromatic faces (i.e., a face receiving only

one color on their boundary vertices).

Proof. We first consider the case when all vertices are colored by 1. Since |F (G)| = 2
3 |E(G)|,

we have that |F (G)| is even, and the number of monochromatic faces is also even. Secondly, we

switch the color of a vertex x with link v1 · · · vk, where k = degG(x). Since k is even, the number

of monochromatic edges in the link is even. Then the parity of the number of monochromatic

faces does not change after switching the color of x. So the lemma follows.

Lemma 15. Let G be an even triangulation on a surface F and let C = uvw be a contractible

3-cycle in G which does not bound a face. Then the plane triangulation H consisting of C and

the vertices and edges in the interior of C is even.

Proof. If H has an odd degree vertex, then it coincides with one of u, v or w, since each inner

vertex of H must have an even degree. Since the number of odd vertices is even, they must

be consecutive two vertices on C. However, it is known [8] that there is no plane triangulation

with two adjacent vertices of odd degree and all other vertices of even degree, a contradiction.

Therefore, H must be even.

3.4 Proof of Theorem 3

Proof of Theorem 3. We show the “only if” part. First, suppose G = K7. Since the number of

faces of K7 is 14, we can delete exactly seven edges to obtain a spanning quadrangulation Q,

and hence |E(Q)| = 21− 7 = 14. If Q is bipartite, then Q is a spanning subgraph of one of the

complete bipartite graphs K3,4,K2,5 and K1,6 with seven vertices. However, they have at most

12 edges and hence this case does not happen. Therefore Q is non-bipartite.

Secondly suppose that G contains K7 as a subgraph. If G has a spanning bipartite quad-

rangulation, then G admits a polychromatic 2-coloring c, by Proposition 7. By Lemmas 14

and 15, every contractible 3-cycle receives both two colors. (For otherwise, i.e., if a 3-cycle C

bounding a 2-cell region R receives only one color in its boundary vertices, then the plane even

triangulation induced by V (C) and all inner vertices in R has at least one monochromatic face,

except the outer face. Hence c is not a polychromatic 2-coloring, a contradiction.) Hence c gives

a polychromatic 2-coloring of K7, but this contradicts the first case.

Then we next show the “if” part. Suppose that G does not contain K7 as a subgraph. If

G has a spanning bipartite quadrangulation, then we are done. So let G be a counterexample

of the assertion, that is, G is an even triangulation on the torus which does not contain K7 as

a subgraph, but has no spanning bipartite quadrangulation. Moreover, we suppose that G has

the smallest number of vertices among all such counterexamples.

Observe that G ̸= K7 by the assumption, and that G is not isomorphic to any one of the

27 triangulations shown in Figure 3 nor G is not 6-regular, by Lemmas 10 and 13, since G is

a counterexample of the assertion. Hence, by Theorem 11, we can apply either a 4-contraction

or a 2-vertex removal to obtain a smaller even triangulation G′. If G′ does not have K7 as a

subgraph, then G′ has a spanning bipartite quadrangulation, by the minimality of G. Hence, by

Lemma 12, G also has a spanning bipartite quadrangulation, a contradiction. Therefore we may

suppose that G′ has K7 as a subgraph. Observe that G is obtained from G′ by a 4-splitting,

since a 2-vertex addition preserves the existence of K7 as a subgraph.

If G′ = K7, then G is isomorphic to the triangulation X, which is shown in Figure 4.

However, the figure shows a polychromatic 2-coloring of G, and hence has a spanning bipartite

quadrangulation, by Proposition 7. This contradicts that G is a counterexample.
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Figure 4: The even triangulation X.

Now suppose that G′ has K7 as a subgraph but has at least eight vertices. Let v′ be a

4-vertex of G where we applied a 4-contraction, and let e1 = uv and e2 = vw be the edges of G′

obtained by a 4-contraction. If both e1 and e2 are contained in K7 ⊂ G′, then G has the map X

as a subgraph. Then G has a spanning bipartite quadrangulation, since attaching a plane even

triangulation to a face of X preserves the existence of a spanning bipartite quadrangulation.

Hence we may suppose that at least one of e1 and e2, say e1, does not belong to K7. In this

case, since u is not contained in K7, the identification of u and w by a 4-contraction of v′ makes

no loop. Hence we can apply a 4-contraction of v′ at {u,w} to get another even triangulation,

say G′′. Note that the embedding of K7 on the torus is uniquely represented by G[7× 1, 4]. (For

example, see [25].) Then it is not difficult to see that G′′ does not contain K7 as a subgraph.

Since |V (G′′)| < |V (G)|, G′′ satisfies the assertion, by the minimality of G. Hence G has a

spanning bipartite quadrangulation, by Lemma 12, a contradiction.

Therefore, such a counterexample does not exist, and we are done.

4 Proofs of Theorems 4 and 5

In this section, we prove Theorems 4 and 5. For proving them, the notions “face subdivision”

and “color factor” play important roles.

An even embedding on a surface F is a map such that each face is bounded by a closed

walk of even length. Put a new vertex in each face of an even embedding H and join it to all

vertices on the corresponding facial walk. Then we see that the resulting map G on F is an even

triangulation on F, which is the face subdivision of H and denoted by G = FS(H). The vertex

set U = V (G)\V (H) is the color factor of G.

Theorem 16. The following results hold:

(i) Every non-bipartite quadrangulation on the projective plane is 4-chromatic [28].

(ii) Every even triangulation G on the projective plane is the face subdivision of some even

embedding H. Moreover, χ(G) ≥ 4 if and only if H is non-bipartite. Such an even

embedding H is uniquely taken in G. [19]

(iii) For any non-spherical surface F, there exists an integer N(F) such that

– if F is orientable, then every even triangulation G on F with ew(G) ≥ N(F) is 4-

colorable. [12]
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– if F is nonorientable, then every even triangulation G on F with ew(G) ≥ N(F) is

5-colorable. In particular, G is 5-chromatic if and only if G is the face subdivision of

some even embedding H including a 4-chromatic quadrangulation H ′ as a subgraph.

[4, 20]

Proof of Theorem 4. Let G be an even triangulation on the projective plane. Suppose that a

spanning quadrangulation Q is non-bipartite. By Theorem 16(i), Q is not 3-colorable. Then G

is not 3-colorable either. This shows the first assertion of Theorem 4.

Suppose that G is not 3-colorable. By Theorem 16(ii), G is the face subdivision of some

non-bipartite even embedding H with color factor U . Then we see that G−E(H) is a spanning

bipartite quadrangulation with bipartition U and V (H). Furthermore, we obtain a spanning

non-bipartite quadrangulation of G by deleting every other edge of G incident to each vertex v

in U , since H is non-bipartite

Before proceeding to the proof of Theorem 5, we note that the assumption for the edge width

in the theorem cannot be omitted in general for a spanning bipartite quadrangulation. Let G

be an even triangulation on a surface F containing Km as a triangular embedding for some odd

integer m ≥ 5, where the Euler characteristic χ(F) of F and the integer m must satisfy the

equation m2 − 7m + 6χ(F) = 0. Similarly to K7 in Theorem 3, we see that G has edge width

exactly 3 and admits no spanning bipartite quadrangulation, as in the following. Therefore we

must have N(F) ≥ 4 in Theorem 5.

If G = Km, then |E(G)| = 1
2m(m − 1). If G has a spanning bipartite quadrangulation B,

then we have

|E(B)| = 2

3
|E(G)| = 2

3
· m(m− 1)

2
=

1

3
m(m− 1).

Since B is bipartite, B is a spanning subgraph of some complete bipartite graph of m vertices,

which is isomorphic to Km1,m2 with m1 +m2 = m and satisfies |E(Km1,m2)| = m1m2. Hence

|E(B)| ≤ max{m1m2 : m1 +m2 = m} ≤ 1

4
m2,

and consequently we have
1

3
m(m− 1) ≤ 1

4
m2,

which is however impossible when m ≥ 5. Also in the case when G contains a triangular

embedding of Km as a proper subgraph, we can do similarly as in the proof of Theorem 3.

Now we prove Theorem 5.

Proof of Theorem 5. Let F be a non-spherical surface other than the projective plane, letN(F) be
the integer as in Theorem 16(iii), and let G be an even triangulation on F. We prove the existence

of a spanning bipartite quadrangulation and that of a spanning non-bipartite quadrangulation

in G separately.

Bipartite quadrangulations: If χ(G) ≤ 4, then Proposition 6 implies that G has a spanning

bipartite quadrangulation. Otherwise, by Theorems 16(iii), the surface is nonorientable, and

G is the face subdivision of some non-bipartite even embedding H with color factor U . Then

G− E(H) is a spanning bipartite quadrangulation with bipartition U and V (H).

Non-bipartite quadrangulations: Suppose first hat G is 5-chromatic. By Theorem 16(iii),

G = FS(H) for some non-bipartite even embedding H. Then H can be extended to a spanning

non-bipartite quadrangulation of G by adding every other edge incident to each vertex in the

color factor U .
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Suppose next that G is 4-colorable. We first consider the case when F is an orientable

surface. It was implicitly proved in [12] that if the edge width of G is large enough, then G

has four disjoint homotopic non-separating cycles D1, . . . , D4 lying in this order on the surface

satisfying the following;

(i) The annulus triangulation A = A[D1, D4] of G bounded by D1 and D4 is 3-colorable, where

an annulus triangulation bounded by D and D′ is a plane graph in which all but the two

faces D and D′ are triangular.

(ii) Any proper vertex 3-coloring of A can be extended to a proper vertex 4-coloring of G.

Hence G has a proper vertex 4-coloring c : V (G) → {1, 2, 3, 4} such that the vertices of A are

3-colored by c with the colors 1, 2 and 3. An (i, j)-edge in G is an edge whose ends are colored

by i and j by c, and an (i, j)-cycle (or an (i, j)-closed walk) is one consisting only of (i, j)-edges.

Let A[Di, Dj ] be the annulus triangulation of G bounded by Di and Dj for 1 ≤ i < j ≤ 4. A

face path W = f0f1 · · · fk is a sequence of faces f0, . . . , fk of G such that for each i, the faces fi
and fi+1 share a single edge. When f0 = fk, W is a face cycle. In W , an edge shared by two

adjacent faces is an inner edge of W , and others outer edges.

Let D2 = u1 · · ·ul. We modify D2 into a (1, 2)-cycle, as follows: If c(ui) = 3 for some i, then

we replace the two edges ui−1ui and uiui+1 with the path Pui between ui−1 and ui+1 through the

neighbors of ui contained in A[D2, D3]. Since A is 3-colored, the vertices of Pui are colored 1 and

2 alternately. Repeating these procedures for each ui with c(ui) = 3, we get a (1, 2)-closed walk

C ′ contained in A[D2, D3]. Let C be the shortest essential (1, 2)-cycle such that E(C) ⊂ E(C ′).

Since C is 2-colored, the length of C is even, and hence we let C = v1 · · · v2m. Observe that

the right-hand side and the left-hand side of C can be defined, since C is 2-sided. For each odd

integer i, let R1
i · · ·R

pi
i be the face path consisting of the faces incident to vi in the right-hand

side of C, and for each even integer i, let L1
i · · ·L

qi
i be the face path consisting of the faces

incident to vi in the left-hand side of C. Then let

X = R1
1 · · ·R

p1
1 L1

2 · · ·L
q2
2 R1

3 · · ·R
p3
3 L1

4 · · ·L
q4
4 · · · R1

2m−1 · · ·R
p2m−1

2m−1 L1
2m · · ·Lq2m

2m

be the face cycle contained in A[D1, D4]. Note that (1, 2)-edges appear in X as inner edges

alternately, and that all outer edges of W ′ are (2, 3)-edges and (1, 3)-edges.

Removing all (1, 2)-edges and (3, 4)-edges from G, we get a spanning bipartite quadrangu-

lation Q on Sg (see Proposition 6). Let Q′ be the quadrangulation on Sg obtained from Q by

adding all inner (1, 2)-edges in X, and removing all inner (1, 3)-edges and inner (2, 3)-edges in X.

Since the vertices in Q colored by 1 and 2 are contained in the same partite set of the bipartition

of Q, the new quadrangulation Q′ must be non-bipartite. Hence we are done.

Finally, we consider the case when F is a nonorientable surface other than the projective

plane. (Note that the assertion does not hold for the projective plane.) Suppose that F is the

Klein bottle. By a similar method as in [21], if the edge width of G is large enough, then every

even triangulation G on the Klein bottle satisfies one of the following:

(I) G is the face subdivision of some non-bipartite even embedding H.

(II) G has four disjoint homotopic non-separating cycles D1, . . . , D4 lying in this order on a

handle such that the annulus triangulation A = A[D1, D4] is 3-colorable, and any proper

vertex 3-coloring of A can be extended to a proper vertex 4-coloring of G.

(III) G has an essential separating cycle C such that

– G is separated by cutting along C into two triangulations M1 and M2 on Möbius

bands with boundary cycle C, and
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– for i = 1, 2, the map Gi on the projective plane obtained from Mi by pasting a 2-cell

D to the boundary C and adding a single vertex vi on D and joining vi to all vertices

on C is a non-3-colorable even triangulation.

In the case (I) and (II), we can do as in the previous cases. In the case (III), applying Theorem

16(ii) to each Gi, we can take a non-bipartite even embedding Hi with FS(Hi) = Gi, for i = 1, 2.

Combining H1 and H2 suitably in G, we can construct a spanning non-bipartite quadrangulation

of G, but we omit a detailed argument.

For nonorientable surface other than the projective plane nor the Klein bottle, we can do

similarly to the above arguments. We leave this case for the readers, see [21].
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[26] J. Petersen, Die Theorie der regulären graphs, Acta Math. 15 (1891), 193–220.

[27] H.G. Yeh, and X. Zhu, 4-colorable 6-regular toroidal graphs, Discrete Math. 274 (2003),

261–274.

[28] D.A. Youngs, 4-chromatic projective graphs, J. Graph Theory 21 (1996), 219–227.

[29] H. Zhang, and X. He, On even triangulations of 2-connected embedded graphs, SIAM J.

Comput. 34 (2005), 683–696.

13



Appendix

Figure 5: Spanning bipartite quadrangulations.

Figure 6: Spanning non-bipartite quadrangulations.

14



Figure 7: Spanning bipartite quadrangulations ofG[3×3, 2], G[3×3, 3], G[5×3, 2], G[5×3, 3], G[5×
5, 3], G[5× 5, 4].

Figure 8: Spanning bipartite quadrangulations of G[m× 1, k], G[(2r+3)× 1, r+2], G[(3r+1)×
1, r + 2].
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Figure 9: Spanning bipartite quadrangulations of G[25× 1, 12], G[33× 1, 16].

Figure 10: Spanning bipartite quadrangulations of G[17× 1, 6], G[17× 1, 8], G[25× 1, 8], G[33×
1, 8], G[37× 1, 12].
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