Every 5-connected planar triangulation is 4-ordered Hamiltonian

Kenta Ozeki*
National Institute of Informatics,
2-1-2 Hitotsubashi, Chiyoda-ku,
Tokyo 101-8430, Japan
and
JST, ERATO, Kawarabayashi Large Graph Project
e-mail: ozeki@nii.ac.jp

Abstract

A graph G is said to be 4-ordered if for any ordered set of four distinct vertices of G, there exists a cycle in G that contains all of the four vertices in the designated order. Furthermore, if we can find such a cycle as a Hamiltonian cycle, G is said to be 4-ordered Hamiltonian. It was shown that every 4-connected planar triangulation is (i) Hamiltonian (by Whitney) and (ii) 4-ordered (by Goddard). Therefore, it is natural to ask whether every 4-connected planar triangulation is 4-ordered Hamiltonian. In this paper, we give a partial solution to the problem, by showing that every 5-connected planar triangulation is 4-ordered Hamiltonian.

Keywords: 4-ordered, 4-ordered Hamiltonian, triangulations, plane graphs

1 Introduction

A graph G is said to be k-ordered for an integer $3 \leq k \leq |V(G)|$, if for any ordered set of k distinct vertices of G, there exists a cycle in G that contains all the k vertices in the designated order. Furthermore, if we can find such a cycle as a Hamiltonian cycle, G is said to be k-ordered Hamiltonian. These topics have been extensively studied; see the survey [2].

In this paper, we focus on 4-connected planar triangulations. In fact, it is known that such graphs have good properties;

*This work was in part supported by JSPS KAKENHI Grant Number 25871053 and by Grant for Basic Science Research Projects from The Sumitomo Foundation.
Theorem 1 Let G be a 4-connected planar triangulation. Then

(i) G is Hamiltonian. (Whitney [12])

(ii) G is 4-ordered. (Goddard [3])

Note that Theorem 1 (i) was improved to 4-connected planar graphs (by Tutte [11]) and 4-connected projective planar graphs (by Thomas and Yu [8]). However, we cannot lower the assumption on 4-connectedness to 3-connectedness, since there exist infinitely many 3-connected planar triangulations that are not Hamiltonian (see [4]). On the other hand, by using ideas of Goddard [3], we can construct infinitely many 3-connected planar triangulations that are not 4-ordered, and infinitely many 5-connected planar graphs that are not 4-ordered. Therefore, both of the assumptions “4-connected” and “triangulation” are needed for the property of being “4-ordered”.

Recall that 4-ordered Hamiltonian graphs are definitely Hamiltonian and 4-ordered. It follows from Theorems 1 (i) and (ii) that every 4-connected planar triangulation satisfies both properties, and hence it is natural to pose the following conjecture (Conjecture 2).

Conjecture 2 Every 4-connected planar triangulation is 4-ordered Hamiltonian.

Theorem 3 Every 5-connected planar triangulation is 4-ordered Hamiltonian.

This paper is organized as follows; in the next section, we will give terminologies and a known result, used in the proof of Theorem 3 in Section 3. In the last section, we will give a conclusion of this paper, together with some open problems.

2 Preliminaries

For a graph G, the order of G is denoted by $|G|$. Let H_1 and H_2 be two subgraphs of a graph G. Then $H_1 \cup H_2$ denotes the subgraph of G with $V(H_1 \cup H_2) = V(H_1) \cup V(H_2)$ and $E(H_1 \cup H_2) = E(H_1) \cup E(H_2)$, and $H_1 \cap H_2$ denotes the subgraph of G with $V(H_1 \cap H_2) = V(H_1) \cap V(H_2)$ and $E(H_1 \cap H_2) = E(H_1) \cap E(H_2)$. We use a similar notation also for a vertex subset U or an edge subset P of G; so, $H_1 \cup U$ is the subgraph of G with $V(H_1 \cup U) = V(H_1) \cup U$ and $E(H_1 \cup U) = E(H_1)$, and $H_1 \cup P$ is the subgraph of G with $V(H_1 \cup P) = V(H_1) \cup V(P)$ and $E(H_1 \cup P) = E(H_1) \cup P$, where $V(P)$ is the set of vertices that are end vertices of some edges in P. A pair (H_1, H_2) is a separation of G if $H_1 \cup H_2 = G$ and $E(H_1) \cap E(H_2) = \emptyset$.

For a path P and two vertices $x, y \in V(P)$, $P[x, y]$ denotes the subpath of P between x and y. Furthermore, let $P(x, y) = P[x, y] - \{x\}$, $P[x, y) = P[x, y] - \{y\}$, and $P(x, y] = P[x, y] - \{x, y\}$.

2
Let G be a connected plane graph. A facial walk in G is the boundary walk of some face of G. Furthermore, if it is a cycle, then we call it a facial cycle in G.

Let T be a subgraph of a graph G. A T-bridge of G is either (i) an edge of $G - E(T)$ with both ends on T or (ii) a subgraph of G induced by the edges in a component of $G - V(T)$ and all edges from that component to T. A T-bridge satisfying (i) is said to be trivial; otherwise it is non-trivial. For a T-bridge B of G, the vertices in $B \cap T$ are the attachments of B (on T), and any vertex of B that is not an attachment is a non-attachment. We say that T is a Tutte subgraph in G if every T-bridge of G has at most three attachments on T. For another subgraph C of G, T is a C-Tutte subgraph in G if T is a Tutte subgraph in G and every T-bridge of G containing an edge of C has at most two attachments on T. When T is a path or a cycle, we call T a C-Tutte path or a C-Tutte cycle, respectively.

Note that if G is 4-connected and T is a Tutte subgraph in G with $|T| \geq 4$, then T must contain all vertices in G; otherwise, there exists a T-bridge in G whose attachments form a cut set in G of order at most three, contradicting that G is 4-connected. Indeed, the concept of “Tutte subgraphs” was first introduced by Tutte [11] in order to prove his seminal result; every 4-connected planar graph is Hamiltonian. Since then it has been extended by several researchers, see [6, 7, 8, 9, 13]. The following theorem is a main tool to prove Theorem 3. See also the paper [9] by Thomassen.

Theorem 4 (Sanders [7]) Let G be a connected plane graph, let C be a facial walk in G, let $x, y \in V(G)$ with $x \neq y$, and let $e \in E(C)$. Assume that G contains a path from x to y through e. Then G has a C-Tutte path from x to y through e.

Note that originally Sanders [7] showed only the 2-connected case, but we can easily show Theorem 4 using a block decomposition. Hence, we omit that proof of Theorem 4.

3 Proof of Theorem 3

Let G be a 5-connected planar triangulation, and let v_1, v_2, v_3 and v_4 be four distinct vertices in G. We will show that G has a Hamiltonian cycle passing through v_1, v_2, v_3 and v_4 in this order. It follows from Theorem 1 (ii) that G has a cycle passing through those vertices in that order. This implies the following; $G - v_4$ has a path P from v_1 to v_3 through v_2 such that

(P1) $G - V(P(v_1, v_3))$ contains a path from v_3 to v_1 through v_4.

In addition, by taking a path satisfying property (P1) as short as possible, we can also consider the following condition. Here a chord of P is an edge e not in P such that both of end vertices of e are contained in P.

(P2) For any chord of \(P \), one end vertex of it is contained in \(P[v_1, v_2] \) and the other is contained in \(P(v_2, v_3) \).

Indeed, if there exists a chord \(xy \) of \(P \) such that both end vertices are contained in \(P[v_1, v_2] \) or in \(P[v_2, v_3] \), then we can detour \(P \) by \(xy \) instead of \(P[x, y] \). It is easy to see that the new path also satisfies condition (P1) and is shorter than \(P \). Therefore, a path that is as short as possible, subject to (P1), also satisfies condition (P2).

Let \(G^1 = G - V(P(v_1, v_3)) \), and let \(C^1 \) be the unique facial walk of \(G^1 \) that is not facial in \(G \). Note that \(v_1, v_3 \in V(C^1) \). Now we consider a separation \((H_1, H_2)\) of \(G^1 \) such that \(|H_1 \cap H_2| \leq 2 \), \(v_1, v_3 \in V(H_1) \), and \(v_4 \in V(H_2) - V(H_1) \). When \(H'_1 \) consists of only the two vertices \(v_1 \) and \(v_3 \) and no edges and \(H'_2 = G^1 \), a pair \((H'_1, H'_2)\) is a separation of \(G^1 \) satisfying all of the above conditions. Therefore, such a separation \((H_1, H_2)\) of \(G^1 \) must exist. Take such a separation \((H_1, H_2)\) of \(G^1 \) so that \(|H_2| \) is as small as possible. If \(H_2 \) does not contain any edge in \(C^1 \), then \(H_1 \cap H_2 \) forms a cut set in \(G \) of order at most 2, contradicting that \(G \) is 5-connected. Hence \(H_2 \) contains an edge in \(C^1 \). Then it follows from condition (P1) that \(|H_1 \cap H_2| = 2 \) and there exists an edge \(e^1 \) in \(H_2 \cap C^1 \) such that \(G^1 \) has a path from \(v_3 \) to \(v_1 \) through \(e^1 \). (In fact, take an edge in \(H_2 \cap C^1 \) such that it is incident with a vertex in \(H_1 \cap H_2 \).)

It follows from Theorem 4 that \(G^1 \) has a \(C^1 \)-Tutte path \(T^1 \) from \(v_3 \) to \(v_1 \) through \(e^1 \). Note that by the choice of \(e^1 \), \(T^1 \) passes through both of the two vertices in \(H_1 \cap H_2 \). In addition, it satisfies the following property.

Claim 1 \(T^1 \) contains \(v_4 \), but does not contain \(v_2 \).

Proof. Since \(v_2 \notin V(G^1) \), the second statement is trivial. So we only show the first one.

Suppose not, and let \(B \) be a \(T^1 \)-bridge of \(G^1 \) such that \(B \) contains \(v_4 \) as a non-attachment. Let \(S_B \) be the set of attachments of \(B \) on \(T^1 \). If \(B \) has no neighbors in \(P(v_1, v_3) \), then \(S_B \) would be a cut set of \(G \) such that \(S_B \) separates \(B - S_B \) from other vertices and \(|S_B| \leq 3 \), which contradicts that \(G \) is 5-connected. Therefore, \(B \) has neighbors in \(P(v_1, v_3) \). This implies that \(B \) contains an edge in \(C^1 \). Then since \(T^1 \) is a \(C^1 \)-Tutte path in \(G^1 \), we have \(|S_B| \leq 2 \). Let \(\overline{B} = G^1 - V(B - S_B) \). Then \((\overline{B}, B)\) is a separation of \(G^1 \) such that \(|\overline{B} \cap B| = |S_B| \leq 2 \), \(v_1, v_3 \in V(\overline{B}) \) and \(v_4 \in V(B) - V(\overline{B}) \). Furthermore, since \(T^1 \) passes through \(e^1 \) and \(B \) is a \(T^1 \)-bridge of \(G^1 \), we have \(e^1 \in E(\overline{B}) \), which implies that \(V(H_2) - V(B) \neq \emptyset \). Since \(T^1 \) passes through both of the two vertices in \(H_1 \cap H_2 \), we see that \(V(B) \subset V(H_2) \), which contradicts the choice of \((H_1, H_2)\). This completes the proof of Claim 1. \(\Box \)

Let \(G^2 = G - V(T^1(v_3, v_1)) \), and let \(C^2 \) be the unique facial walk of \(G^2 \) that is not facial in \(G \). Note that \(v_1, v_3 \in V(C^2) \). Then we consider a separation \((R_1, R_2)\) of \(G^2 \) such that \(|R_1 \cap R_2| \leq 2 \), \(v_1, v_3 \in V(R_1) \), and \(v_2 \in V(R_2) - V(R_1) \). When \(R'_1 \) consists of only
the two vertices v_1 and v_3 and no edges and $R_2' = G^2$, a pair (R_1', R_2') is a separation of G^2 satisfying all of the above conditions. Therefore, such a separation (R_1, R_2) of G^2 must exist. Take such a separation (R_1, R_2) so that $|R_2|$ is as small as possible. Since G is 5-connected, R_2 contains an edge in C^2. Note that P is contained in G^2, and hence G^2 has a path from v_1 to v_3 through v_2. This implies $|R_1 \cap R_2| = 2$ and there exists an edge e^2 in $R_2 \cap C^2$ such that G^2 has a path from v_1 to v_3 through e^2.

It follows from Theorem 4 that G^2 has a C^2-Tutte path T^2 from v_1 to v_3 through e^2. Note that by the choice of e^2, T^2 passes through both of the two vertices in $R_1 \cap R_2$. Notice also that $T^1 \cup T^2$ is a cycle in G, and it satisfies the following, which is crucial in the proof of Theorem 3.

Claim 2 There exist no non-trivial $(T^1 \cup T^2)$-bridges in G. In particular, $T^1 \cup T^2$ is a Hamiltonian cycle in G.

Proof. Suppose that there exists a non-trivial $(T^1 \cup T^2)$-bridge D in G. Let S_D be the set of attachments of D on $T^1 \cup T^2$.

Suppose first that $S_D \cap V(T^1(v_3, v_1)) = \emptyset$. This condition implies that D is a T^2-bridge of G^2. Since T^2 is a C^2-Tutte path in G^2, we have $|S_D| \leq 3$, which implies that S_D is a cut set in G of order at most three, contradicting that G is 5-connected. Therefore, we may assume that $S_D \cap V(T^1(v_3, v_1)) \neq \emptyset$. By the same argument, we also see that $S_D \cap V(T^2(v_1, v_3)) \neq \emptyset$.

These conditions, together with the planarity, imply that D contains an edge in C^1 and an edge in C^2. Then since $D - V(T^1(v_3, v_1))$ is a T^2-bridge of G^2 containing an edge in C^2, we have

$$|S_D \cap V(T^2)| \leq 2. \quad (1)$$

Suppose that D contains no vertices in P as non-attachments. See Figure 1. This condition implies that there exists a $(T^1 \cup P)$-bridge, say B_D, such that $D \subseteq B_D$. Note that $B_D - V(P(v_1, v_3))$ is connected and a T^1-bridge of G^1 containing an edge in C^1, and hence $B_D - V(P(v_1, v_3))$ has at most two attachments on T^1. Since any vertex in $S_D \cap V(T^1(v_3, v_1))$ is an attachment of $B_D - V(P(v_1, v_3))$ on T^1, we have

$$|S_D \cap V(T^1(v_3, v_1))| \leq \left| \left(B_D - V(P(v_1, v_3)) \right) \cap V(T^1) \right| \leq 2.$$

Then it follows from inequality (1) that $|S_D| \leq 4$, which contradicts that G is 5-connected.

Therefore, we may assume that D contains vertices in P as non-attachments. See Figure 2. Since P is a path in G^2 from v_1 to v_3 and $v_1, v_3 \in V(T^2)$, D has at least two attachments on P. Then it follows from inequality (1) that $S_D \cap V(T^2) \subseteq V(P)$ and $|S_D \cap V(T^2)| = 2$. Let $\{x, y\} = S_D \cap V(T^2)$. Note that $P[x, y]$ is contained in D. Consider the region bounded by $P[x, y] \cup T^2[x, y]$. Since $S_D \cap V(T^2) = S_D \cap V(P)$ is
the set of attachments of D on T^2, there are no edges between vertices in $P(x, y)$ and those in $T^2(x, y)$. Thus, since G is a triangulation, there exists an edge in G connecting x and y. Note that xy is a chord of P. It follows from condition (P2) and symmetry that we may assume that x is contained in $P[v_1, v_2]$ and y is contained in $P(v_2, v_3)$. Then (\overline{D}, D) is a separation of G^2, where $\overline{D} = G^2 - V(D - S_D)$, such that $|\overline{D} \cap D| = |S_D| = 2$, $v_1, v_3 \in V(\overline{D})$, and $v_2 \in V(D)$. Furthermore, since T^2 passes through e^2 and D is a $(T^1 \cup T^2)$-bridge of G, we have $e^2 \in E(\overline{D})$, which implies that $V(R_2) - V(D) \neq \emptyset$. Since T^2 passes through both of the two vertices in $R_1 \cap R_2$, we see that $V(D) \subset V(R_2)$, which contradicts the choice of (R_1, R_2).

Therefore, there exist no non-trivial $(T^1 \cup T^2)$-bridges in G, which easily implies that $T^1 \cup T^2$ is a Hamiltonian cycle in G. This completes the proof of Claim 2. □

By Claim 1, v_2 appears in T^2 and v_4 appears in T^1, which implies that $T^1 \cup T^2$ contains v_1, v_2, v_3 and v_4 in this order. By Claim 2, $T^1 \cup T^2$ is a Hamiltonian cycle in G. These complete the proof of Theorem 3. □

4 Conclusion

In this paper, we have focused on the property of being 4-ordered Hamiltonian. In fact, considering known results (Theorem 1) on 4-connected planar triangulations, it is natural to pose Conjecture 2. We gave a partial solution to it, by showing that every 5-connected planar triangulation is 4-ordered Hamiltonian.

In the rest, we would like to put some problems related to k-ordered Hamiltonian. The first one is Conjecture 2, which already appeared in Section 1.

The second problem is the property of being 4-ordered Hamiltonian of graphs on non-spherical surfaces. In fact, there are some results that are the counter parts of Theorem 1. Recall that for a graph G on a non-spherical surface F^2, the edge-width of G is the length of a shortest non-contractible cycle in G.

Theorem 5 (Mukae and Ozeki [5]) Let G be a 4-connected triangulation on a surface. Then G is 4-ordered.
Theorem 6 (Yu [13]) For any surface F^2, there exists an integer $N = N(F^2)$ satisfying the following; for any 5-connected triangulation G of F^2, if the edge-width of G is at least N, then G is Hamiltonian.

Note that the assumptions on 5-connectedness and edge-width in Theorem 6 are both best possible, in some sense. In fact, Theorem 6 cannot be improved to 4-connected graphs (see [10]) and to the statement without the edge-width assumption (see [1]).

Considering these two theorems, the following seems also a natural conjecture. Because of the facts mentioned above, the assumptions on the edge-width and 5-connectedness are best possible, if the conjecture is true. We leave it to readers as an open problem.

Problem 7 For any surface F^2, there exists an integer $N = N(F^2)$ satisfying the following; for any 5-connected triangulation G of F^2, if the edge-width of G is at least N, then G is 4-ordered Hamiltonian.

Goddard [3] also mentioned about the property of being 5-ordered; no planar graph can be 5-ordered. However, his idea cannot work for graphs on non-spherical surfaces, and hence the following might also hold. Those are the last problems in this paper.

Problem 8 Any 5-connected triangulation of a non-spherical surface F^2 is 5-ordered.

Problem 9 For any surface F^2, there exists an integer $N = N(F^2)$ satisfying the following; for any 5-connected triangulation G of F^2, if the edge-width of G is at least N, then G is 5-ordered Hamiltonian.

Note that if a 4-connected triangulation G of a surface has two adjacent vertices of degree 4, then G cannot be 5-ordered. In fact, if v_1, v_3 and v_4 are specified as in Figure 3 and v_2 and v_5 are specified as vertices outside of the structure, then the graph cannot have a cycle containing v_1, v_2, v_3, v_4 and v_5 in this order. Hence the assumption on 5-connectedness in Problems 8 and 9 are best possible, in a sense.
References

