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Abstract

Let £ > 2,1 > 2, m > 0 and n > 1 be integers, and let G be
a connected graph. If there exists a subgraph H of G such that for
every vertex v of G, the distance between v and H is at most m, then
we say that H m-dominates G. A tree whose maximum degree is
at most k is called a k-tree. Define o/ (G) = max{ |S| : S C V(G),
dg(xz,y) > [ for all distinct z,y € S}, where dg(z,y) denotes the

distance between « and y in G. We prove the following theorem and
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show that the condition is sharp. If an n-connected graph G satisfies
o?MH)(G) < (k — 1)n + 1, then G has a k-tree that m-dominates G.
This theorem is a generalization of both a theorem of Neumann-Lara
and Rivera-Campo on a spanning k-tree in an n-connected graph and
a theorem of Broersma on an m-dominating path in an n-connected

graph.
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1 Introduction

In this paper, we consider finite simple graphs, which have neither loops nor
multiple edges. Let G be a graph with vertex set V(G) and edge set E(G).
We write |G| for the order of G, that is, |G| = |V(G)|. For two vertices u
and v of G, let dg(u,v) denote the distance between u and v in G, which is
the length of a shortest path of G’ connecting u and v. For a subgraph X or
a vertex set X of G and a vertex v of GG, the distance between v and X is
defined to be the minimum value of dg(v, z) for all x € V(X) or x € X, and
denoted by dg(v, X). Thus dg(v, X) = 0 if and only if v is contained in X.

Let m > 0 be an integer and X be a subgraph or a vertex set of G. Then
the m-th dominating set of X, denoted by Domi™(X), is defined to be the

following vertex set of G.
Domi™(X)={v e V(G) : dg(v,X) <m}.

If all the vertices of a subgraph Y or a vertex set Y of G are included in
Domi™(X), then we say that X m-dominates Y. Thus a subgraph H of G
0-dominates G if and only if H is a spanning subgraph of G.

For an integer [ > 2, the invariant o/(G) of a graph G is defined as follows:

o (G) = max{|S|: S C V(G), d¢(z,y) > [ for all distinct z,y € S}.

Thus the independence number a(G) of G is equal to o?(G). A tree whose
maximum degree is at most £ is called a k-tree. So a hamiltonian path is a

spanning 2-tree. The following theorem is well known.



Theorem 1 (Chvéatal and Erddés [3]) Let n > 1 be an integer, and let G
be an n-connected graph. If a(G) < n+ 1, then G has a hamiltonian path.

The following theorem shows a k-tree version of Theorem 1.

Theorem 2 (Neumann-Lara and Rivera-Campo [5]) Let £ > 2 and
n > 1 be integers, and let G be an n-connected graph. If o(G) < (k—1)n+1,

then G has a spanning k-tree.

On the other hand, Broersma obtained the following result which is an-

other generalization of Theorem 1.

Theorem 3 (Broersma [2]) Let m > 0 and n > 1 be integers, and let G
be an n-connected graph. If o*™+tV(G) < n + 1, then G has a path that
m-dominates G.

In this paper, we prove the following theorem, which is a generalization
of both Theorems 2 and 3.

Theorem 4 Let k > 2, m > 0 and n > 1 be integers, and let G be an
n-connected graph. If o*™+V(G) < (k — 1)n + 1, then G has a k-tree that
m-dominates G.

We first show that the condition of Theorem 4 is sharp in the sense that
there is a family of graphs G which satisfies o2™*Y(G) = (k—1)n+2 but has
no k-tree that m-dominates G. We construct such a graph G as follows (see
Figure 1). Let k > 2, m > 1 and n > 1 be integers. Let D;1, D; 5, ..., D;, be
disjoint copies of the complete graph of order n, where 1 < i < (k—1)n+ 2.
Foreach 1 < i< (k—1)n+2and 1 < j < m —1, join all the vertices of
D, ; to all the vertices of D; ;. by edges. For each 1 < i < (k—1)n+ 2,
let v; be a new vertex not contained in D;; U D;5 U ---U D;,,, and join
v; to all the vertices of D;,, by edges. Let H be a graph of order n. For
every 1 < i < (k—1)n+ 2, join all the vertices of H to all the vertices
of D;; by edges. Then we obtain the desired graph G. It is easy to see
that G is an n-connected graph, and has no k-tree that m-dominates G

since the complete bipartite graph K, (x_1)n,+2 Whose vertex set is V' (H) and
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Figure 1: The graph G with m = 4, where + denotes the join of two graphs.

((k — 1)n+ 2)K,, has no spanning k-tree. On the other hand, it follows that
Q2= v 1<i<(k—1Dn+2} =(k—-1)n+2.
We conclude this section with a similar result on k-ended tree instead of

k-tree, where a k-ended tree is a tree that contains at most k leaves.

Theorem 5 (Kano, Tsugaki and Yan [4]) Let k > 2 and m > 0 be in-
tegers, and let G be a connected graph. If o®™+t)(G) < k, then G has a

k-ended tree that m-dominates G.

Notice that Theorem 5 has not yet been extended to n-connected graphs,
and this extension might be an interesting problem. For other related results

on spanning trees, the reader is referred to the book [1] and the survey [6].

2 Proof of Theorem 4

We begin with some notations. An edge joining a vertex x to a vertex y is
denoted by xy or yx. Let G be a graph and H be a subgraph of G. For
a vertex v of H, we denote by Ny(v) the neighborhood of v in H. Thus

degy (v) = [Nu(v)]



An inner verter of a path is a vertex not being its end-vertex. For two
vertices x and y of G, a path connecting x and y is called an (z, y)-path. Let
X and Y be disjoint vertex sets of G'. If a path P connects a vertex of X and
a vertex of Y, and all the inner vertices of P are contained in V(G)—(XUY),
then we call P an (X,Y)-path of G. For a vertex z ¢ X, we abbreviate a
({ z }, X)-path as a (z, X)-path.

Let 1" be a tree. An end-vertex of 7', which has degree one, is often called
a leaf of T. We denote the set of leaves of T' by Leaf(T'). For two vertices
u and v of T, there exists a unique path connecting u and v in 7', and it
is denoted by Pr(u,v). Let T be a rooted tree with root r, and let v be a
nonroot vertex of 7. Then the vertex adjacent to v and lying on the path
Pr(v,r) is called the parent of v and denoted by v~. A vertex whose parent
is v is called a child of v. In particular, there are deg,(v) — 1 children of v
and degy(r) children of r. The set of children of v is denoted by Child(v).

For simplicity, we often identify a tree T with its vertex set V(7). For
example, we write G — T for G — V(7).

A vertex set X of a subgraph H of a graph G is called an independent
set of H if no two vertices of X are joined by an edge of H. The following

three lemmas are useful in our proof. Lemma 2.1 is well-known.

Lemma 2.1 Let T be a tree, and let X be an independent set of T'. Then

(i) The number of leaves of T is Y, .y (degp(v) —2) +2, where W = {v €
V(T) : degy(v) > 3}.

(ii) The number of components of T — X is Y (degyp(x) — 1) + 1.

Lemma 2.2 Let m > 1 be an integer, and let G be a connected graph and
H a subgraph of G. Let y; and yo be two distinct vertices of Domi™(H) — H.
Assume that there exist two disjoint vertex sets S(y1), S(y2) C V(H) such
that

(i) dg(ys, S(y;)) = m and dg(y;, H — S(y;)) > m+1 fori=1,2; and

(ii) there exists no (S(y1), S(y2))-path in G whose inner vertices are con-

tained in G — H, in particular, no edge of G connects S(y1) and S(ya).



Then dg(y1,y2) > 2(m+1).

Proof. Suppose that d¢(y1, y2) < 2m+1. Let P(y;, y2) be a shortest path in G
connecting y; and y,, and let P(y;, S(y;)) be a shortest path in G' connecting
y; and S(y;) for i = 1,2. Then, by (i), the inner vertices of P(y;, S(v;))
are contained in G — H. Moreover, P(y;,y,) passes through H by (ii) since
otherwise P(y1,y2) U P(y1,S(y1)) U P(y2, S(y2)) contains an (S(y1), S(y2))-
path whose inner vertices are contained in G — H. Proceeding along P(y1, y2)
from y; to yo, let z; be the first vertex of P(y;,y2) that lies in H and let 2o
be the last vertex of P(y1,y2) that lies in H. Then dg(y;, z;) > m by (i) for
i=1,2.

First, suppose that z; # 2. Then dg(y1,y2) = da(y1, 21) + da(z1, 22) +
dg(z2,y2) > 2m + 1. Since dg(y1,y2) < 2m + 1, equality holds in the above
inequality. Therefore, for i = 1,2, dg(yi, ;) = m, and so z; € S(y;) by
(i). Moreover we obtain dg(z1,22) = 1, which implies that 2, € S(y;) and
2y € S(y2) are adjacent in G. This contradicts (ii).

Next, suppose that z; = z3. If 21 = 25 € S(y1), then P(ys, S(y2)) U
P(y, z1) contains an (S(y2), S(y1))-path whose inner vertices are contained
in G — H, which contradicts (ii). Thus z; = 22 € S(y1). By symmetry,
21 =2 & S(y1) U S(y2). Hence by (i), da(y1, y2) = da(y1, 21) + da(21, ¥2) >
2(m + 1), which is again a contradiction. Therefore Lemma 2.2 holds. O

Lemma 2.3 Let m > 1 be an integer, and let G be a connected graph and
H a subgraph of G. Lety € Domi™(H)— H and w € G — Domi™(H) be two
vertices. Assume that there exists a vertex set S(y) C V(H) such that

(i) daly, S(y)) =m and dg(y, H — S(y)) > m+1; and

(ii) there exists no (w, S(y))-path whose inner vertices are contained in G —

H.

Then dg(w,y) > 2(m + 1).

Proof. Let P(w,y) be a shortest path connecting w and y. By (i), there
exists a path P(y,S(y)) of length m which connects y and S(y) and whose
inner vertices are contained in G — H. By (ii), P(w,y) passes through H



since otherwise P(w,y) U P(y, S(y)) contains a (w, S(y))-path whose inner
vertices are contained in G — H. Proceeding along P(w,y) from w to y, let
z; be the first vertex of P(w,y) that lies in H and let zo be the last vertex
of P(w,y) that lies in H.

If 21 # 29, then dg(w,y) = dg(w, 21) + da(21, 22) + da(22,y) > 2(m + 1).
Hence we may assume z; = zy. By (ii), we obtain z; = 2o € S(y). Thus by
(i), dg(w,y) = dg(w, z1) + dg(z1,y) > 2(m + 1). Hence Lemma 2.3 holds.
([

We are ready to prove Theorem 4.

Proof of Theorem 4. If m = 0, then Theorem 4 follows from Theorem 2.
Thus we may assume that m > 1. If £ = 2, then Theorem 4 follows from
Theorem 3. Thus we may assume that £ > 3.

Let G be an n-connected graph that satisfies the condition in Theorem 4.
Suppose that G has no k-tree that m-dominates G. Let 1" be a k-tree of G
with |T'| > n. Notice that the minimum degree of G is at least n and so G
has a path order at least n. Since T does not m-dominate G, there exists
a vertex w in G — Domi™(T'). Since G is an n-connected graph, there exist
n distinct (w, T)-paths Q1, @2, . .., Q, such that each @; connects w and a
vertex v; of T, ;N Q; = {w} for all i # j, and Q;NT = {v; } for all i. Let
V*={wv,ve,...,v, }. Let Dy, Dy, ..., D; be the components of T'— V*, and
let D={Dy,Dy,...,D}.

Define 0p(D;) = {v e V*:v e Np(D;)} for each D; € D. Thus 9;(D;)

consists of the vertices of V* which are adjacent to D; in T". Let

DI'=D, ={DeD:|0,(D) =1},
DI —Dy={DeD:|0(D)] =2}, and
DL, =Dy = {D €D :[0(D)| >3}

Notice that if there is no confusion, we often abbreviate DI as D,. Choose
a k-tree 1', a vertex w and n paths @)1, Qs,...,Q, so that

(T1) |Domi™(T)| is as large as possible,

(T2) |DT U DL, is as small as possible, subject to (T1),
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(T3) |Leaf(T)| is as small as possible, subject to (T2) and
(T4) |T'| is as small as possible, subject to (T3).
By the choice of T" for (T1), we can obtain Claim 1.

Claim 1 deg;(v) =k for every v € V*.

Claim 2 (i) No two vertices of V* are adjacent in T .
(i) |D] = (k—1)n+1 and |DT| = (k — 2)n+ ZD€D§3(|8T(D)| —2)+2.

Proof. Assume that two vertices v, and v, of V* are adjacent in 7. Choose
two paths @, and @, that connect w to v, and vy, respectively. Then T" =
T+ Qq+ Qp — vaup is a k-tree and satisfies Domi™(T") O Domi™(T) U { w },
which contradicts (T1). Hence (i) holds.

By the above statement (i), Lemma 2.1 and by Claim 1, we have |D| =
(k — 1)n+ 1. By contracting every component of D to a single vertex, we
obtain a tree 7/D from T. Then V(T//D) = V*U D] U DJ U DL, and each
component of DT corresponds to a leaf of 7'/D. The number of leaves of

T/D is given by Lemma 2.1, and so the second equality holds. O

Claim 3 For every leaf x of T, there exists a vertex y, € Domi™(T) such
that dg(y.,x) = m and dg(y,, T — x) > m+ 1.

Proof. Let x be a leaf of . Let W = {y € V(G) : dg(y,z) = m}.
Suppose that either W = 0 or dg(y,T — x) < m for every y € W. Then
Domi™(T) = Domi™(T — x)

It follows that { z } is not a component in D since otherwise T — x + @,
is a k-tree of G for some 1 < a < n, and it m-dominates Domi™(T") U { w },
which contradicts (T1). We may assume ¢ € D,, 1 < a <. Then T — x
is a k-tree, w ¢ Domi™(T — x), Q1,Qq,...,Q, are (w,T — x)-paths, and
{Dy—xz}U{D;:1<i<mn,i#a}isthe set of components of (T"—x)—V*.
Thus |DT U DL,| = |D{~* U DLF?|, |Leaf(T)| > |Leaf(T — x)| and |T'| >
|7 — x|. This contradicts (T3) or (T4). Hence there exists y, € W such that
dG(yy, T — x) > m+ 1. Therefore Claim 3 holds. O

By Claim 3, we can obtain the following claim.
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Claim 4 y,, # y,, for any distinct x,, x5 € Leaf(T).

Let Yieor ={ys: @ € Leaf(T) }, and for each y € Yieop, let S(y) = {x €
Leaf(T) : y, =y }. Then S(y) consists of exactly one leaf of T by Claim 4.
By the choice of T' for (T1), we can obtain the following claim.

Claim 5 For every y € Ype.s, there exists no (w,S(y))-path in G whose

inner vertices are contained in G —T.
Claim 6 For any distinct y1,Y2 € Yiear U{w }, da(y1,y2) > 2(m +1).

Proof. If y; = w, then by Claim 5 there exists no (w, S(y2))-path in G whose
inner vertices are contained in G — 7', and hence dg(w,ys) > 2(m + 1) by
Claim 3 and Lemma 2.3. Therefore, we may assume that y;,y, € Yzcqp. Let
S(y;) = {x;} fori =1,2. Then dg(y;,z;) = m and dg(y;, T — x;) > m+1
by Claim 3.

We shall show that there exists no (xy,x2)-path in G whose inner vertices
are contained in G—T'. This fact implies d¢(y1, y2) > 2(m+1) by Lemma 2.2.
Suppose, to the contrary, that there exists a (21, x9)-path P in G whose inner
vertices are contained in G—T. By Claim 5, P intersects no ); for 1 < i < n.

First, suppose that there exists D € D such that x1, 2, € D. Then D+ P
contains a cycle C'. Let 17" be a tree obtained from 7'+ P by deleting one edge e
of C' which is adjacent to a vertex of degree at least 3inT. Let D' = D+P—e.
Since T" is a k-tree, w ¢ Domi™(T") by (T1). Furthermore, Q1,Q2,...,Q,
are (w,T")-paths, and D' = (D — { D })U{ D'} is the set of components of
1" — V*. Moreover, |Domi™(T)| < |Domi™(1")|, |DT U DL,| = |DT" U DL;|
and |Leaf(T)| > |Leaf(T")|. This contradicts (T1) or (TSS. )

Next, suppose that there exist two distinct Dy, Dy € D such that z; € D;
for + = 1,2. Then T+ P contains a unique cycle C', which passes through
a vertex v, of V*. Let e be an edge of C incident with v,, and let 17" =
T+P+Q,—e. Then 7" is a k-tree such that Domi™(T)U{w } C Domi™(1").
This contradicts (T1). Hence Claim 6 holds. O

Claim 7 There exists a component D* € Dy = DI such that deg; (z) < k—1
for all x € V(D*).



Proof. Suppose that there exists no D € D; such that deg,(z) < k — 1 for
all z € V(D). Then every component D € D; has a vertex of degree k in T,
and so D has at least k — 1 leaves of 1. Hence, it follows from Claims 2, 4
and 6 and from k£ > 3 that

@G > [Yieas| = [Leaf ()] > ) [Leaf(T) N V(D)
DEDI

> [Di|(k = 1) = ((k = 2)n +2)(k = 1)
>n+2)(k—1)>(k—1)n+2.

This contradicts the assumption on 2™+ (@) in the theorem. Hence Claim 7
holds. O

Without of loss of generality, we may assume that D; = D* and {v; } =
Or(D1). We regard T as a rooted tree with root v;. For each D € D, let rp
be the root of D, and let vp = rp~ € V*, where the root of D is the vertex
that has no parent in D.

Since G is an n-connected graph, there exist n distinct (Dy, T — D1 )-paths
Ry, Ry, ..., R, in G such that every R; connects a vertex of D, and a vertex
of T — Dy, the end-vertices of R; and R; in T'— D, are distinct if 1 # j,
and the inner vertices of every R; are contained in G — T. In particular,
RiNR; CV(Dy)ifi# j,and |[R; N Dy| =1 for every 7. It may happen
that some R, consists of an edge rp,v1. Let U* be the set of end-vertices of
R;,1 < i < n, which are contained in 7' — D;. Then |U*| = n.

Claim 8 There ezists no (w, Dy)-path whose inner vertices are contained in
G —T. Especially, V(Q;) NV (R;) C{v} foralll <i,57 <n.

Proof. Suppose that there exists (w, D;)-path ) whose inner vertices are
contained in G —7T. Let 7" =T 4+ ). By Claim 7, 17" is a k-tree and satisfies
Domi™(T) U {w} C Domi™(T"), which contradicts (T1). Hence Claim 8
holds. O

Claim 9 deg,(u) = k for every u € U*.
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Proof. Suppose that degy(u) < k — 1 for some u € U*. Let R,,1 < a < n,
be the path connecting D; and u. Then u # wv; by Claim 1. Let 7" =
(I' + Q1 + R,) — virp,. Then it follows from Claims 7 and 8 that 7" is a
k-tree such that Domi™(T) U {w} C Domi™(1"), which contradicts (T1).
Hence Claim 9 holds. O

Claim 10 For every D € D3 = DL, U* nop(D) € {vp }.

Proof. Suppose that there exists a vertex u € U*N (07 (D) — { vp }) for some
D € Ds3. Let R, be the path connecting Dy and u. Let 7" = (I'+ R,) —uu~
and Dy = Dy + (R, — {u}). Then 17" is a k-tree. By the choice of 1" for
(T1), w ¢ Domi™(T"). By Claim 8, Q,Qs,...,Q, are (w,T")-paths, and
Dy, D,,...,D; are the components of 7" — V*. Moreover, |0r(D;)| = 1,
|01 (Dy")| = 2, |07 (D)| = |0r(D)| —1 > 2 and |04(D;)| = |07(D;)| for every
D; € D—{Dy,D}. Hence, |Domi™(T)| < |Domi™(1")| and |DT" U DL| <
| DT U DLy, which contradicts (T1) or (T2). Hence Claim 10 holds. 0

For convenience, we introduce four notations P(s,t), P[s,t), P(s,t] and
Pls, t] of a path in T connecting two veritces s and t. Namely, P[s, t| contains
both s and t, P(s,t) contains neither s nor ¢, P[s,t) contains s but not t,
and P(s,t] contains ¢ but not s. From now on, we use these four different
notations of a path in 7.

For each D € Dy, = DI let 0r(D) = {vp = rp, sp, }, where rp is the
root of D. Soif D is a path and rp # s, then rp and s, are the end-vertices
of D. On the other hand, if D is a path of order at least two and rp = s,
then one end-vertex of D is a leaf of 17" and the other end-vertex rp = s}, has
degree 3 in T'.

If D € D, possesses one of the following three properties, then we call D

a pseudo-path component.

(P1) rp =sp and D ={rp}.

(P2) D is a path and rp # sp,.

(P3) There exists a vertex zp, € P[rp, sp| such that z € U* and deg,(z) = 2

for every vertex z € P(zp, sp], where P(zp,sp] = 0 if zp = sp,.

11



Let
Db ={D € Dy,=DL : Dis a pseudo-path component }.

Claim 11 If D € Dy, then there exists a vertex xp € Plrp, sp)| that satisfies

the following two properties, where P(s7,, sp] = 0.
(i) degy(z) =2 for every vertex z € Plxp,sp).
(ii) Domi™(Plxp,sp]) € Domi™(T — P(xp, sp))-

Proof. 1f deg,(sp~) = 2, then xp = sp~ satisfies the properties (i) and (ii).
Hence, we may assume that D satisfies the property (P3) and zp = sp~.
Choose paths @Q,, @y and R, so that vp € Q,, sp € Qp and zp € R.. Let
T'=(T+Qu+Qv+R.)—vprp—spsp_. By Claim 8, T" is a k-tree such that
Domi™(T) U{w} C Domi™(T"), which contradicts (T1). Hence Claim 11
holds. O

For each D € D%, choose a vertex xp € Plrp, sy that satisfies (i) and

(i) of Claim 11 so that the order of P[xp, s},] is as large as possible.

Claim 12 If D € D}, then there exists a vertex yp such that de(yp, Plap, sp])
=m and d¢(yp,T — Plzp,sp|) > m+ 1.

Proof. Let W = {y € V(G) : dg(y, Plzp,sp]) = m}. Suppose that either
W =0 or dg(y,T — Plzp,sp]) < m for every y € W. Choose paths @), and
@y so that vp € @, and sp € Q.

First, suppose that D satisfies the property (P1). Then 7" =T + Q, +
Q» — D is a k-tree and satisfies Domi™(T) U {w} C Domi™(T"), which
contradicts (T1).

Next assume that D satisfies (P2). If 2 # rp, then xp~ satisfies the
properties (i) and (ii) of Claim 11, which contradicts the choice of zp. Hence
zp =rp. Let T" = (T + Qu+ Q) — P[rp, sp|. Then T" is a k-tree such that
Domi™(T) U {w} € Domi™(T"), which contradicts (T1).

Finally, suppose that D satisfies (P3). If xp ¢ Child(zp), then xp~
satisfies the properties (i) and (ii) of Claim 11, which contradicts the choice
of zp. Hence xp € Child(zp). Choose a path R. such that zp € R.. Let

12



T'=(T+Q.+ Qv+ R.)— Plxp,sp| —vprp. By Claim 8, T" is a k-tree such
that Domi™(T) U {w } € Domi™(T"), which contradicts (T1).

Therefore there exists a vertex yp € W such that dg(yp, T — Plxp, s5))
> m + 1. Therefore Claim 12 holds. O

Let Ypun = {yp : D € DE}. For each y € Ypuu, choose D € DE so that
yp =y, and let S(y) = V(P[zp,sp|). Note that S(y) = D = {rp} if D
satisfies (P1). By Claims 3 and 12, we obtain the following claim.

Claim 13 Yieor N Ypan = 0, and yp, # yp, for any distinct Dy, Dy € DY,

Claim 14 For every y € Ypan, the following two statements hold.

(i) There exists no (w,S(y))-path whose inner vertices are contained in
G-T.

(ii) There exists no (D1, S(y))-path whose inner vertices are contained in
G-T.

Proof. (i) Suppose that there exists a (w, S(y))-path ) whose inner vertices
are contained in G — T. Choose D € DI and a path @, such that yp = y
and sp € (. Then D satisfies (P3) since otherwise T+ @) is a k-tree and
Domi™(T) U {w} C Domi™(T + Q). Let z be the end-vertex of @) in S(y).
Choose a vertex wq of QN such that wy is the closest vertex of QNQ), to z in
(. Then by Claim 11 and the choice of wy, T" = (T'+Q»+Q|z, wo]) — P(z, sp]
is a k-tree such that Domi™(T)U{ w } € Domi™(1"), which contradicts (T1).
Hence (i) holds.

(ii) Suppose that there exists a (D1, S(y))-path @ such that all the inner
vertices of ) are contained in G — T'. Choose D € DY and paths @, and Q,
such that yp =y, vp € Q, and sp € Q. Note that ) intersects neither @),
nor @ by Claim 8. Then T" = (T'+ Q. + Q» + Q) —vprp — Spsy, is a k-tree
such that Domi™(T) U {w} C Domi™(1"), which contradicts (T1). Hence
(ii) holds. O

Claim 15 For two distinct y1,y2 € Yiear U Ypan U{w }, da(y1, y2) > 2(m+

1).
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Proof. If y; € Yiear U Ypau, then de(yi, S(vi)) = m and de(yi, T — S(vi)) >
m + 1 by Claims 3 and 12.

Suppose that y; = w. By Claims 5 and 14, there exists no (w, S(yz))-path
whose inner vertices are contained in G — 1'. By Lemma 2.3, this implies
that de(w,y2) > 2(m + 1).

Therefore, we may assume that yi,%2 € Yiear U Ypay. By Claim 6, we
may assume that either (i) y1 € Yieor and y2 € Ypaun, or (ii) y1,y2 € Ypaun-
By Lemma 2.2, it suffices to show that there exists no (S(y1),S(y2))-path
whose inner vertices are contained in G — T. We shall prove this fact by

considering the following two cases.
Case 1. y; € Yiear and yo € Ypuy,

Choose a leaf © € Leaf(T') and a component D € Db such that y, = y;
and yp = y2. Then S(y;) = {x } and S(y2) = V(P|xp, sp])- Suppose that
there exists a (x, S(y2))-path ) whose inner vertices are contained in G — 7.
Let z be the end-vertex of @ in S(yy). Choose paths @), and @), such that
vp € Qg and sp € (Qy. By Claim 8, () intersects neither @), nor Q.

Suppose first that = € V(D). Then D satisfies the property (P3). Choose
a path R. such that zp € R.. By Claim 8, R, intersects neither ), nor Q.
By Claim 14, R, does not intersect @) also. Hence T" = (T + Q, + Qy +
R.+ Q) — P(z,sp) — vprp — zpz*, where zpz* is an edge contained in a
path Pr(zp,x), is a k-tree such that Domi™(T)U{w } C Domi™(1"), which
contradicts (T1).

Next suppose that x ¢ V(D). Then 7" = (T + Q.+ Q» + Q) — P(z,sp) —
vprp is a k-tree such that Domi™ (T)U{ w } C Domi™(1"), which contradicts
(T1).

Case 2. y1,92 € Ypam

Choose two components D,, D, € D} so that yp, = y; and yp, = yo.
Choose paths @);, @; and @)}, such that sp, € ()i, sp, € @; and vp, € Q.
Suppose that there exists an (S(y1), S(y2))-path @ whose inner vertices are
contained in G—T. Let z, and 2, be the end-vertices of () contained in S(y,)
and S(ys), respectively. If D, satisfies (P1) or (P2), then 7" =T+ Q; +Q; +
Qn+Q — P(z, sp,) — $p,5p, — VD, "D, is a k-tree and satisfies Domi™ (1) U

{w} C Domi™(T"), a contradiction. Hence by symmetry, we may assume
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that both D, and D, satisfy (P3). Choose @ so that |P(z4, sp,)|+|P (2, Sp, )|
is as small as possible.

Suppose that there exists a vertex v € Domi™(P(zq,sp,) U P(2b, Sp,))
such that w ¢ Domi™(T" — (P(zq4,5p,) U P(2z,5p,))). By Claim 11 (ii),
there exist either a (u, P(z,, sp, ))-path whose inner vertices are contained in
(G —T)U P(z,sp,) or a (u, P(z, sp,))-path whose inner vertices are con-
tained in (G —T') U P(z,, sp,). This implies that there exists a (P(zq, sp, ),
P(z, sp,))-path whose inner vertices are contained in G — 7T". This contra-
dicts the minimality of | P (24, sp, )|+|P (2, sp,)|- Hence Domi™ (P (24, sp,)U
P(z,5p,)) € Domi™(T — (P(2a,5p,) U P(22,5p,)))-

Let 7" = (T + Q; + Q; + Qn + Q) — P24, sp,) — P(2b, 5p,) — VD, "D, By
Claim 8 and the above fact, 7" is a k-tree such that Domi™(T) U {w} C
Domi™(T"), which contradicts (T1). Hence Claim 15 holds. 0O

Claim 16 [V*UU"| > [V*[+ > pcp.,(0r(D) —1).

Proof. We first construct a new tree 7 from 7" as follows. Remove all the
components of Dy, replace every component D of Dy by an edge joining two
vertices vp and sp, and contract every component of D3 to a single vertex.
Then the vertex set of 7% is V* U D~3. We consider T* as a rooted tree with
root v;. Then for every vertex D € D, there are |0p(D)| — 1 children of
D in T*. By Claim 10, these children of D are contained in V* — U* N V*.
Since |U*| = |V*| = n, it follows that |U* —U*NV*| = |[V* =U*NV*| >
ZDGDZS(|8T(D)| —1). Hence V*UU*| = |V*+ |U*=U*"NV* > |V*| +
S pens, (0r(D)] = 1). D

Claim 17 (i) If D € DY, then |Leaf(T) N D| > (k —2)|U* N D|.
(ii) If D € Dy — DY, then |Leaf(T)ND| > (k—2)|U*ND|+ 1.

(ii) |Leaf (T) NUpep, DI 2 (k= 2)|U* 1 Upey, DI+ (k= 2|V*|
+ ZD6D23(|8T(D)| —2)+2.

(iv) If D € D, then |Leaf(T) N D| > (k —2)|U* N D| — |0r(D)| + 2.

Proof. (i) This follows immediately from Lemma 2.1 and Claim 9.
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(ii) Let D € Dy — DY, If D is a path with rp = sp, then U* N D =0 or
{rp}. HU*ND =0, then (ii) holds since D contains a leaf of . Thus we
may assume U*N D = {rp }. Then we derive a contradiction by considering
T+ Q.+ Qp+ R. —vprp — spsp, where vp € Q, sp € Qp and rp € R..
Hence there exists a vertex z in P[rp, sp) such that deg,(z) > 3.

Choose such a vertex z so that z is closest to sp in D. Then every vertex
in P(z,sp) has degree 2in 1. If z € U*, then D satisfies (P3) and so D € DY,
which contradicts D € Dy — DY, Hence z ¢ U*.

Thus it follows from Claim 9 that

[Leaf(T)ND| > > max{deg(v) —2,0}

veV (D)

> 3 (degp(v) —2) + degp(z) — 2
veU*NV (D)

> (k—=2)[U*ND|+1.

Hence (ii) holds.

(iii) We first construct a new tree 7'/D3 from T as follows. Replace every
component D of D, by an edge joining two vertices vp and sp, and contract
every component of D3 into a single vertex. Then the number of leaves of T
contained in | J,cq, D is equal to the number of leaves of 7'/D3. Since every
vertex D € D3 has degree 0p(D) in 1'/Ds, (iii) follows from Lemma 2.1 and
Claim 1.

(iv) Let D € Ds3. By adding the edges joining D to V* together with
their endvertices contained in V* to D, we obtain a tree D’. The number
of leaves of T" contained in D is equal to the number of leaves of D' minus
Or(D). Hence (iv) holds. O

Claim 18 |Leaf(T)| > |D| — |D¥|.
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Proof. By Claims 16 and 17, we obtain

|Leaf(T)|
>(k—2)|Un ) DI+ |Dof — | D

D€D2

+(k=2)U'n | DI+ k=2 |+ Y (0r(D)]—2) +2

DeD, DeD>3

+(k=2)U"n |J DI= D [0r(D)|+ 2Dy

DED23 DED23
>(k—=2)|[V*UU*| +|Dg| — | DB + 2
>(k =2V + (k=2) Y (10r(D)] = 1) +|Dy| — | D§| +2

DEDsy
S(k— 20+ 3 (100(D)| — 2) + [Dasl + D] — [ DY) +2
DeDs,
=|D1| + |Dxs| + |Do| — | DY (by Claim 2)

=|D[ — | D]
Hence Claim 18 holds. O
By Claims 2, 4, 13, 15 and 18, we have

?m(G) > [Yiear UYpan U{w} = |Yieas| + |[Ypam| + 1
= [Leaf(T)| + D3| +1
> [DI+1
= (k—1n+2.

This contradicts the condition in the theorem. Consequently Theorem 4 is
proved. O
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