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Abstract

A Grünbaum coloring of a triangulation G is a map c : E(G) → {1, 2, 3} such
that for each face f of G, the three edges of the boundary walk of f are colored
by three distinct colors. In this paper we investigate the question whether each
even (i.e. Eulerian) triangulation on a surface with representativity at least r has
a Grünbaum coloring. We prove that, regardless of the representativity, every even
triangulation on a surface F has a Grünbaum coloring as long as F is the projective
plane, the torus, or the Klein bottle, and we observe that the same holds for the
sphere and any surface with sufficiently large representativity. On the other hand,
we construct even triangulations with no Grünbaum coloring and representativity
r = 1, 2, and 3 for all but finitely many surfaces. In dual terms, our results imply
that no snark admits an even map on the projective plane, the torus, or the Klein
bottle, and that all but finitely many surfaces admit an even map of a snark with
representativity at least 3.
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1 Introduction

In 1968, B. Grünbaum conjectured the following generalization of the Four Color Theorem:

Grünbaum’s conjecture [6]. Every simple triangulation of an orientable surface has a
Grünbaum coloring.

However, the relationship between triangulations and Grünbaum colorings dates back
much further—already in 1880 Tait showed that every 4-colorable planar triangulation has
a Grünbaum coloring in an unsuccessful attempt to prove the Four Color Theorem. In the
dual form, Grünbaum’s conjecture states that no snark (i.e. a bridgeless 3-regular graph
without proper 3-edge-coloring) has a polyhedral map in an orientable surface, where a
map of a 3-regular graph is polyhedral if its dual is simple. More generally, representativity
of a map, defined as the minimum number of intersections of an essential curve on the
surface with the graph, is a measure of how much the map locally resembles a planar map.
Polyhedral maps are then precisely the 3-connected maps with representativity at least 3.
Since every graph admits a map in some orientable surface, Grünbaum’s conjecture would
imply that each map of a snark in an orientable surface has representativity at most 2. For
nonorientable surfaces, the Petersen graph has a polyhedral map in the projective plane
and therefore, the focus is on orientable maps of snarks. In fact, in the nonorientable case
it is known that each nonorientable surface admits infinitely many polyhedral embeddings
of snarks; see [11]. Over the years, embeddings of snarks and Grünbaum’s conjecture
attracted significant attention [3, 13, 15, 16], culminating in Kochol’s disproval of the
conjecture in 2009 for all orientable genera greater than 4; see [10]. However, embeddings
of snarks remain rather poorly understood, with a particular open problem being when
precisely a snark has a polyhedral map.

For the remaining cases of Grünbaum’s conjecture, Albertson et al. [1] showed that
every toroidal triangulation with chromatic number different from 5 has a Grünbaum
coloring. Indeed, for a triangulation to have a Grünbaum coloring it is sufficient that its
chromatic number is at most 4; see for example [1] for a short proof. Under the additional
assumption that the triangulations are even (i.e. Eulerian), it is often possible to obtain
good bounds on the chromatic number of the graph, or even a characterisation of the
triangulations with a given chromatic number; see for instance [7, 12, 17]. The duals of
even triangulations are even maps, where even maps are ones in which every face has
even length. Motivated by the general lack of understanding of embeddings of snarks, we
focus on the question whether a variant of Grünbaum’s conjecture might be true when
restricted to even triangulations. More precisely, for a surface F and representativity r,
we investigate the following problem:

Is there an r-representative even triangulation on F without a Grünbaum coloring?

In the dual language, we ask in which surfaces snarks have even maps with a given
representativity. It is not immediately obvious why even maps of snarks should exist at
all—snarks are precisely the cubic graphs in which every 2-factor contains at least 2 odd
cycles. However, every ‘nontrivial’ snark is upper-embeddable, that is, has an orientable
map with one, respectively two faces (if its cycle rank is even, resp. odd). It follows that
every nontrivial snark on 4k+2 vertices has an even map with representativity 1 in some
orientable surface; see Section 2 for details. Our main result is the following theorem.
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Theorem 1. Every even triangulation of the sphere, the projective plane, the torus or
the Klein bottle admits a Grünbaum coloring.

The Four Color Theorem implies that there is no planar snark, and thus also every
planar even triangulation admits a Grünbaum coloring. Finally, we observe that known
results on the colorings of even triangulations can be used to show that every even tri-
angulation with sufficiently high representativity admits a Grünbaum coloring. On the
negative side, we show how to construct a polyhedral even map of a snark in each ori-
entable surface of genus at least 16 and each nonorientable surface of genus at least 4.
Our results are summarized in Table 1.

surface \ r 1 2 3 high surface \ r 1 2 3 high
S1 Y Y Y Y N1 Y Y Y Y
S2 N ? ? Y N2 Y Y Y Y

Si (3 ≤ i ≤ 15) N N ? Y N3 N N ? Y
S≥16 N N N Y N≥4 N N N Y

Table 1: Does every even triangulation on the given surface with representativity r have
a Grünbaum coloring?

The paper is organized as follows. In Section 2 we collect all necessary definitions and
basic results. Section 3, which is devoted to proving that even triangulations with either
small genus or high representativity admit Grünbaum colorings, is further divided as fol-
lows. First we deal with the 6-regular case in Subsection 3.1 and then in Subsection 3.2
we prove Theorem 1. Finally, in Subsection 3.3 we show that high representativity guar-
antees that every even triangulation has a Grünbaum coloring. The negative results are
contained in Section 4, where we provide constructions of even embeddings of snarks with
representativity r for each r ≤ 3 in all but finitely many surfaces. We conclude the paper
with a brief section highlighting some of the open problems in the area.

2 Preliminaries

We generally allow our graphs to contain both loops and multiple edges. If a graph has
neither loops nor multiple edges, then it is simple. A k-vertex is a vertex of degree k. A
graph G is k-regular if each vertex of G has degree k, and in particular, G is cubic if G is
3-regular. A closed walk is even if it is of even length; otherwise it is odd. In particular,
a k-cycle is a cycle of length k.

A surface is a connected topological space in which every point has an open neigh-
borhood homeomorphic to an open disk. So, throughout this paper, a surface is always
connected and closed. Let Si denote the orientable surface of (orientable) genus i, and
let Ni denote the nonorientable surface of (nonorientable) genus i. A map G on a sur-
face F is a 2-cell embedding of a graph on F. A map G is a triangulation if each face
of G is bounded by three distinct edges. A face f of G is even if f is bounded by an
even closed walk; otherwise it is odd. For a vertex v of G, the link of v is the boundary
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walk of the region formed by v and all edges and faces incident to v. Let ℓ be a simple
closed curve on a surface F. If F − ℓ is disconnected, then ℓ is separating. Otherwise it
is non-separating. Moreover, ℓ is contractible if ℓ bounds a 2-cell region on F. If ℓ does
not bound a 2-cell region, then it is essential. An essential closed curve ℓ is 1-sided if a
tubular neighborhood of ℓ is a Möbius band, and 2-sided otherwise. (In particular, ℓ is
2-sided if it is contractible.)

The representativity r(G) of a map G on a surface F is the minimum number of
intersecting points of G and γ, where γ ranges over all essential simple closed curves on F
(if F is the sphere, then we define r(G) = ∞). A map G on F is k-representative if r(G) ≥
k. It is an important observation that G and its dual G∗ have the same representativity
(see [14, Proposition 5.5.5]), and that the representativity of a triangulation G coincides
with the length of a shortest essential cycle of G. Since we consider only 2-cell maps,
every triangulation is 1-representative. The following is a well-known characterization of
2- and 3-representative triangulations, which will play an important role in this paper.

Proposition 2 ([14, Propositions 5.5.11 and 5.5.12]). Let G be a triangulation on a
surface F. Then

(i) G is 2-representative and 2-connected if and only if G does not have loops; and

(ii) G is 3-representative and 3-connected if and only if G is simple.

A map f : V (G) → {1, 2, · · · , k} in a graph G is a vertex k-coloring, and f is proper
if f(u) ̸= f(v) for any uv ∈ E(G). The chromatic number χ(G) of G is the minimum
integer k such that G has a proper vertex k-coloring. We can similarly define an edge
k-coloring. A snark is a 2-edge-connected cubic graph with no proper edge 3-coloring;
the smallest snark is the Petersen graph. Usually, it can be assumed that the snark is
cyclically 4-edge-connected, and we call such snarks nontrivial. (A graph G is cyclically
4-edge-connected if any edge cut of size at most four separates G into a graph and a forest,
i.e., there exists at most one component having a cycle in the resulting graph.)

A Grünbaum coloring of a triangulation G is a map c : E(G) → {1, 2, 3} such that for
each face f of G, the three edges of the boundary walk of f are colored by three distinct
colors (see Figure 1). Note that a triangulation G has a Grünbaum coloring if and only
if the dual graph G∗ of G (i.e. a cubic graph) has a proper edge 3-coloring. Hence if H
is a map of a snark on a surface, then its dual (i.e. a triangulation) has no Grünbaum
coloring.

1
2
3

Figure 1: A triangulation G on the sphere and a Grünbaum coloring of G
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The existence of Grünbaum colorings is related to vertex colorings by the following
proposition, which was first proved for the planar case by Tait [19]. For a simple proof,
see [1].

Proposition 3. If a triangulation G has a proper vertex 4-coloring, then G has a
Grünbaum coloring.

Note that the converse of Proposition 3 is true for the planar case, while false in
general. For example, it is known that every triangulation on the torus with chromatic
number 7 has a Grünbaum coloring and that such triangulations exist; see [1] for details.

In this paper, the Four Color Theorem plays an important role, where the Four Color
Theorem states that every planar graph without loops is properly vertex 4-colorable. By
Proposition 3, we have:

Lemma 4. Let G be a triangulation of the sphere. If G has no loop, then G has a proper
vertex 4-coloring and a Günbaum coloring.

The face subdivision of a map G on a surface F is the map on F obtained from G by
adding a single vertex into each face of G and joining it to all vertices on the corresponding
boundary. In this case, if G is an even map, then the face subdivision of G is an even
triangulation on F.

The following lemma shows that it is easy to construct Grünbaum colorings of face
subdivisions of even maps (the same fact is used in several papers; see [9] for example).

Lemma 5. Let H be an even map on a surface F, and let G be the face subdivision of H.
Then G has a Grünbaum coloring.

Proof. We first assign a color 1 to all edges of H. Secondly, since v has even degree,
for each vertex v ∈ V (G) \ V (H) we can give colors 2 and 3 to the edges incident to v
alternately in the cyclic order around v. This gives a Grünbaum coloring of G.

We finish this section with a short proof showing that there are infinitely many snarks
with an even map. A graph is upper-embeddable if it has an orientable map with exactly
one or two faces. (This is related to the maximum genus of a graph G, which is the maxi-
mum integer k such that G can be 2-cell embedded on Sk; see [14, Section 4.5] for details.)
It is known [21] that every cyclically 4-edge-connected graph is upper-embeddable, and
thus every nontrivial snark is upper-embeddable. Since the number of faces of an ori-
entable map of a graph G has the opposite parity as the cycle rank |E(G)| − |V (G)|+ 1
(see [14, Page 122]), a nontrivial snark with n vertices has an embedding with exactly
one face if and only if n ≡ 2 (mod 4). It is easy to see that in any 1-face map of any
graph, the length of the only face is always even which is twice |E(G)|. It follows that
every nontrivial snark on n vertices with n ≡ 2 (mod 4) has an even map in some surface.
The duals of these maps are triangulations by bouquets of 3n/2 circles (i.e. graphs with
a single vertex and 3n/2 loops incident to the vertex).
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v

v

v1

Figure 2: The even triangulation Gp on N1 with two vertices {v, v1}, three edges
{vv, vv1, v1v} and two faces, both vv1v.

3 Grünbaum colorings of even triangulations

We first propose the following lemma for even triangulations with loops. Let Gp be the
even triangulation on the projective plane N1 shown in Figure 2.

Lemma 6. Let G be a triangulation on a surface F with a loop ℓ incident to a vertex v.

(i) If ℓ is contractible, then there is a vertex of odd degree in the interior of ℓ such that
the vertex is different from v.

(ii) If G is an even triangulation and ℓ is essential, then the degree of v is at least 6
unless F is the projective plane and G is isomorphic to Gp.

Proof. (i) For contradictions, we suppose that G has a loop ℓ bounding a 2-cell region
R and all vertices in the interior of R have even degree. Let T be the plane subgraph
of G consisting of all vertices and edges in the interior of R and the edge ℓ. Since each
inner vertex of T has even degree, its dual graph T ∗ is a bipartite graph with |V (T ∗)| − 1
3-vertices and exactly one 1-vertex u. We color the vertices of T ∗ by black and white
so that u is white. Let B (resp., W ) be the set of black (resp., white) vertices of T ∗.
Since every vertex in B has degree 3, we have 3|B| = |E(T ∗)|. On the other hand,
3(|W | − 1) + 1 = |E(T ∗)| since each edge in T ∗ is incident to both a black vertex and
white one. Hence, we have 3|B| = 3(|W | − 1) + 1 = 3|W | − 2, a contradiction.

(ii) Suppose that G is an even triangulation and has an essential loop ℓ incident to a
vertex v. For contradictions, we suppose that deg(v) = 2 or 4. Observe that G has no
loop incident to v other than ℓ. (For otherwise, we have deg(v) = 4 and G must be a
graph with a single vertex v with exactly two loops. It is easy to see that such a graph
cannot triangulate any surface.) By the definition of a triangulation, G has no triangular
face whose boundary walk contains ℓ twice. So we can take two distinct faces f1 and f2
incident to ℓ whose boundary walks are vvv1 and vvv2, respectively. By the assumption
deg(v) ≤ 4, we must have v1 = v2 and deg(v1) = 2.

Therefore, if ℓ is 2-sided, then along ℓ, we can take a simple essential closed curve in
the interior of f2 (that is, the closed curve lies within the face f2 and does not include
vertices and edges), and so this contradicts that G is a 2-cell embedding on the surface.
On the other hand, if ℓ is 1-sided, then it is easy to see that G is isomorphic to Gp and
this completes the proof of the lemma.
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Let v be a 4-vertex in an even triangulation with link v1v2v3v4v1. The 4-contraction
of v at {v2, v4} is removing v, identifying v2 and v4, and replacing two pairs of multiple
edges v1v2, v1v4 and v3v2, v3v4 with two single edges (see Figure 3). The inverse operation
is a 4-splitting.

v

v1

v2

v3

v4

v1

v3

v2=v4

Figure 3: A 4-contraction

v

v1

v2

v3

v4

v1

v3

v2=v4

: 1
: 2

: 3

Figure 4: Extending a Grünbaum color-
ing by a 4-splitting

Lemma 7. Let G be a triangulation on a surface F with a 4-vertex v, and let G′ be
a triangulation on F obtained from G by a 4-contraction of v. If G′ has a Grünbaum
coloring, then so does G.

Proof. Let v be a 4-vertex in G with link v1v2v3v4v1, and let G′ be the triangulation
obtained from G by the 4-contraction of v at {v2, v4}. Suppose that G′ has a Grünbaum
coloring c : E(G′) → {1, 2, 3}, in which there are two possibilities: one is c(v1v2) ̸= c(v2v3)
and the other is c(v1v2) = c(v2v3). In either case, we can get a Grünbaum coloring of G.
(For example, see Figure 4 which shows the former case).

3.1 Grünbaum colorings and 6-regular triangulations

In this section, we show that every 6-regular triangulation on the torus or the Klein bottle
has a Grünbaum coloring.

Let p ≥ 1 and q ≥ 0 be non-negative integers. Let Lp,q be a p × q grid graph with
horizontal, vertical and slope-one diagonal edges. Let Hp,q be the map on the annulus
with p × (q + 1) vertices obtained from Lp+1,q+1 by identifying the top and the bottom,
as shown in Figure 5.

For ui,j ∈ V (Hp,q), we take i modulo q+1 and j modulo p. Let Ck be the cycle of Hp,q

passing only through uk,0, uk,1, . . . , uk,p−1, uk,0 in this order, for k ∈ {0, 1, . . . , q}. Now, if
q ≥ 1, then the vertices on C0 and Cq have degree 4 and the others have 6 in Hp,q.

Let 0 ≤ r ≤ p − 1 be an integer. Let G[p × q, r] be the 6-regular graph on the torus
obtained from Hp,q by identifying each vertex u0,j with uq,j+r and each edge u0,ju0,j+1

with uq,j+ruq,j+r+1 for j ∈ {0, 1, . . . , p− 1}. Note that C0 and Cq are identified and that
G[p× q, r] has exactly p× q vertices.

Theorem 8 (Altshuler [2]). Every 6-regular triangulation on the torus is isomorphic to
G[p× q, r] for some integers p, q > 0 and r ≥ 0.
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u0,0

u0,p−1

u0,1

u0,0 uq,0

uq,1

uq,p−1

uq,0

Figure 5: The graph Hp,q

On the other hand, the 6-regular triangulations on the Klein bottle were classified by
Negami [18], as follows:

A 6-regular triangulation on the Klein bottle can be obtained from the annular map
Hp,q by identifying each vertex u0,j with uq,−j and each edge u0,ju0,j+1 with uq,−juq,−j−1

for each j ∈ {0, 1, . . . , p− 1}. This is of handle type and denoted by Kh(p, q).
When p is even, identify each vertex u0,j with u0,j+p/2, each edge u0,ju0,j+1

with u0,j+p/2u0,j+p/2+1, each vertex uq,j with uq,j+p/2 and each edge uq,juq,j+1 with
uq,j+p/2uq,j+p/2+1, in Hp,q for each j ∈ {0, . . . , p/2 − 1}, respectively. Then we obtain
a 6-regular triangulation on the Klein bottle such that two cycles of length p/2 arise from
C0 and Cq. Now, suppose that p = 2m + 1. Add a crosscap (a Möbius band) to each
boundary of Hp,q−1 (that is, paste a boundary of a Möbius band to a boundary of the
annulus), and for each j ∈ {0, . . . ,m}, join u0,j to u0,j+m and u0,j+m+1, and join uq−1,j to
uq−1,j+m and uq−1,j+m+1 on the added crosscaps. The resulting 6-regular graph is of cross-
cap type and is denoted by Kc(p, q), although the constructions of Kc(p, q) are different,
depending on the parity of p. Note that even if p is odd, the resulting graph Kc(p, q) is
an embedding on the Klein bottle since the surface has exactly two Möbius bands by the
above construction.

Theorem 9 (Negami [18]). Every 6-regular triangulation on the Klein bottle is isomorphic
to precisely one of Kh(p, q) and Kc(p, q) for some integers p, q > 0.

We are now ready to prove that every 6-regular triangulation of the torus or the Klein
bottle has a Grünbaum coloring. Note that the result for the torus has already appeared
in [1].

Theorem 10. Every 6-regular triangulation on the torus or the Klein bottle has a
Grünbaum coloring.

Proof. Let G be a 6-regular triangulation on the torus or the Klein bottle. First observe
that if G is on the torus or G is a handle type Kh(p, q), then we can easily obtain a
Grünbaum coloring of G by assigning color 1 to vertical edges, color 2 to horizontal edges,
and color 3 to all other diagonal edges in Hp,q. Moreover, if G is a crosscap type Kc(p, q)
with p even, then we can also obtain a Grünbaum coloring of G by the above coloring.

We suppose that G is a crosscap type Kc(p, q) with p ≥ 3 odd (if p = 1, then G
is not a triangulation by definition). Now G consists of two triangulated Möbius bands
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(crosscaps) M1,M2 and Hp,q−1. We only consider Grünbaum colorings of M1 and Hp,q−1,
since we can give the coloring of M2 as well as one of M1.

u0,0 u1,0

u1,2u0,2

u0,1

u0,0 u1,0

u1,1

3

2 3

3

3

2

2

21

1

1

1

1
u0,0

u0,0u0,1

u0,2 u0,1

3

32

2

1 1

1

Figure 6: A Grünbaum coloring of Kc(3, 2)

First, observe that Kc(3, 2) has a Grünbaum coloring as shown in Figure 6. (If q = 1,
then we need not consider a Grünbaum coloring of Hp,q−1, since the annular part is
degenerate.) Then we can extend the Grünbaum coloring of Kc(3, 2) to those of Kc(5, 2)
and Kc(7, 2) as shown in Figure 7. Note that colors with parentheses of Grünbaum
colorings in Figure 7 are recurrent colors, that is, we can extend a Grünbaum coloring of
Hp,1 to that of Hp+2,1 by using colors with parentheses repeatedly (based on the coloring
of Figure 6). Moreover, we have a Grünbaum coloring of Hp,2, by pasting two copies of
Hp,1 with a Grünbaum coloring so that edges with the same color are identified. Hence
we can also extend the coloring of Hp,q to that of Hp,q+1. Therefore, every crosscap type
Kc(p, q) with p ≥ 3 odd has a Grünbaum coloring.

3.2 Surfaces with low genus

In this section, we shall prove Theorem 1. To prove the theorem, we introduce several lem-
mas. A pinched surface Fp is a non-smooth topological space such that except for exactly
one point called a pinched point, all points have an open neighborhood homeomorphic to
an open disk. Let G be a graph embedded on Fp so that some vertex v coincides with
the pinched point, where v is a pinched vertex of G. Then a surface splitting at v is to
split v into two copies of v on Fp to get a (pinched) surface or two (pinched) surfaces; for
example, see Figure 8.

Lemma 11. Let G be a triangulation on a pinched surface Fp and let v be a pinched
vertex of G.

(i) Suppose that a surface splitting at v produces a triangulation G′. If G′ has a
Grünbaum coloring, then so does G.

(ii) Suppose that a surface splitting at v produces two triangulations H and H ′. If both
H and H ′ have Grünbaum colorings, then so does G.
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(3)
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3

(3)

1

(2)

2

u0,4

u0,3

u0,2

u0,1

u0,0

u0,0 u1,0

u1,4

u1,3

u1,2

u1,1

u1,0

3

(1)

(1)

2

(1)

(1)

1
1

1
2

3
1

(1)

(1)

(1)

(1)

3

23

(2)

(2)

(3)

(3)

2

1

(3)

(3)

(2)

(2)

u0,4

u0,3

u0,2

u0,1

u0,0

u0,0

u0,6

u0,5

u1,4

u1,3

u1,2

u1,1

u1,0

u1,0

u1,6

u1,5

u0,0

u0,0u0,1

u0,2 u0,1

3

32

2

1 1

1

u0,0 u0,4 u0,3 u0,2

u0,2 u0,1 u0,0

1

3
(3) 3 1

1(1)

(1)

2 (2)

2

1

3

2

u0,0 u0,6 u0,5 u0,4 u0,3

u0,3 u0,2 u0,1 u0,0

(1) (1)

(1) (1) 2

13(2)

1

(3)(2)
(3)

Figure 7: Extension of the Grünbaum coloring of H3,1 to those of H5,1 and H7,1, and
extension for the Möbius bands.

Proof. Every triangular face of G′ (or of H and H ′) is also a face of G. Therefore, this
implies that a Grünbaum coloring of G′ (or of H and H ′) can be extended to that of
G.

Lemma 12. Let G be an even triangulation on a surface F, let v be a 4-vertex of G with
link v1v2v3v4v1, and let G′ be the graph obtained from G by a 4-contraction of v at {v2, v4}.

(i) If v2 ̸= v4, then G′ is an even triangulation on F.

(ii) If v2 = v4 and the 2-cycle vv2v is 2-sided, then the 4-contraction of v deforms G
into an even triangulation on a pinched surface.

(iii) If v2 = v4 and the 2-cycle vv2v is 1-sided, then G′ is an even triangulation on a
nonorientable surface (or the sphere) whose nonorientable genus is just one less than
that of F.
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v v1 v2

Figure 8: A surface splitting of the pinched torus

Proof. Since the statement of (i) clearly holds by the definition, it suffices to show only
(ii) and (iii). Assume that v2 = v4, and let C be the 2-cycle vv2v. In this case, the
4-contraction of v corresponds to the contraction of C into one vertex v′, which breaks
the topology of F. We focus on a tubular neighborhood RC of C and consider how it
changes through the 4-contraction.

(ii) Suppose first that C is 2-sided. In this case, RC is homeomorphic to an open
annulus, and by the 4-contraction, it becomes a pinched surface obtained from two open
disks (which correspond to the left and the right side of C, respectively) by identifying
each one point of them corresponding to v′ (i.e., the resulting pinched surface obtained
from RC is a double cone with the boundaries of RC). For any points other than v′, there
exists an open neighborhood in the surface homeomorphic to an open disk, which is also
an open disk in F. Thus, the obtained topological space is a pinched surface.

(iii) Next suppose that C is 1-sided. In this case, RC in F is homeomorphic to an
open Möbius band, and it is still connected in the resultant topological space F′ by the
4-contraction of v. So, RC in F′ is now homeomorphic to a disk, which is an open
neighborhood of v′. Therefore, the resultant topological space F′ is also a surface. Note
that the 4-contraction of v reduces the number of vertices by one (recall that v2 = v4),
the number of edges by six, and the number of faces by four. Thus, the Euler genus of
F′ is one less than that of F. This directly implies that if F is the projective plane N1,
then F′ is the sphere. On the other hand, if F is the nonorientable surface Ni with i ≥ 2,
then a 1-sided closed curve on F that is not homotopic to C remains on F′, and hence F′

is still nonorientable. Hence the assertion follows.

To simplify the proof of Theorem 1, we also propose the following lemma that gen-
eralizes Lemma 7 to include the cases of Lemma 12. The proof of Lemma 7 naturally
extends to these cases.

Lemma 13. Let G be a triangulation on a surface F with a 4-vertex v and let G′ be a
triangulation obtained from G by a 4-contraction of v. If G′ has a Grünbaum coloring,
then so does G. □

We are now prepared to prove Theorem 1.

Proof of Theorem 1. Let G be an even triangulation on a surface F with loops and mul-
tiple edges allowed, where F is the sphere, the projective plane, the torus or the Klein
bottle. By Lemmas 4 and 6 (i), if F is the sphere, then the theorem holds. So, it suffices
to consider the projective plane, the torus and the Klein bottle.

Case 1. F is the projective plane.

11



If G is 2-representative, then we can use the following result proved by Mohar [12]:
Every 2-representative even triangulation G on the projective plane is the face subdivision
of some even map H on the projective plane, and hence, by Lemma 5, G has a Grünbaum
coloring.

So suppose that G has representativity 1, that is, suppose that G has an essential loop
ℓ incident to a vertex v, by Proposition 2 (i). In this case, we cut open the projective
plane (where G is embedded) along ℓ to get a plane graph D such that all finite faces are
triangular and such that the boundary of the infinite face is a 2-cycle C, where the two
vertices of C are two copies of v. Removing one edge from C, we get a plane triangulation
D′. Suppose that D has a loop ℓ′. Since ℓ′ is contained in the disk bounded by C, the
loop ℓ′ is contractible on the projective plane F. However, this contradicts Lemma 6 (i).
Thus, there is no loop in D, and hence also in D′. So, by Lemma 4, D′ has a Grünbaum
coloring. A Grünbaum coloring of G can be naturally obtained from that of D′, since any
three edges of G forming a triangular face also bound a triangular face of D′ and vice
versa. This completes the proof of Case 1.

We prove the remaining cases by an inductive argument on the number of vertices, to
reduce to the planar or projective planar case. We first prove the following.

Claim 14. Let G be an even triangulation on a surface containing a 2-cell region R
bounded by two distinct edges e1, e2, and let H be a graph obtained from G by removing
the interior of R and identifying e1 and e2. If H has a Grünbaum coloring, then so does
G and e1 and e2 receive the same color.

Proof. Let T be the plane subgraph of G consisting of all vertices and edges in the interior
of R and the edge e1. By Lemma 6 (i), T is a triangulation of the sphere without loops,
and hence Lemma 4 implies that T has a Grünbaum coloring. We may choose colors so
that e1 in the Grünbaum coloring of T is assigned the same color as e1 is in H. Then
combining those Grünbaum colorings, we obtain a Grünbaum coloring of G.

It follows that for the remaining cases of the proof, we may suppose that G has no
2-cell region such as described in Claim 14. If G has a 2-vertex x, then the link of x
consists of two edges, which form a 2-cell region as in Claim 14. Thus, in particular, we
may assume that G has no 2-vertex.

Case 2. F is the torus.

By Euler’s formula, G is 6-regular or has a 4-vertex, since G is an even triangulation.
If G is 6-regular, then G has a Grünbaum coloring by Theorem 10. So we may suppose
that G has a 4-vertex, say v with link v1v2v3v4v1. If v2 ̸= v4, then the 4-contraction of
v at {v2, v4} produces a smaller even triangulation G′ on F, and we obtain a Grünbaum
coloring of G from a Grünbaum coloring of G′ by Lemmas 12 (i) and 13. Therefore, we
may assume v2 = v4.

Let C be the 2-cycle vv2v. If C is contractible, then the 2-cell region bounded by C
is one described in Claim 14 (with e1 = vv2 and e2 = v2v), a contradiction. So, we may
also assume that C is essential. By Lemma 12 (ii), the 4-contraction of v at {v2, v4} gives
an even triangulation, say G′, on a pinched surface Fp. Let v

′ be the vertex obtained by
the 4-contraction. Since F is the torus and C is essential, Fp is the pinched torus with
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pinched vertex v′. (See the direction from left to center in Figure 9.) Then we apply the
surface splitting at v′ of G′, and the resulting graph G′′ is a triangulation on the sphere.
If G′′ does not contain a loop, then Lemma 4 guarantees the existence of a Grünbaum
coloring of G′′, and also in G′ and G by Lemmas 11 (i) and 13 respectively. Therefore, we
may assume that G′′ contains a loop ℓ. By Lemma 6 (i), both the interior and the exterior
of ℓ contain a vertex of odd degree in G′′. Since G′ is an even triangulation of the pinched
torus Fp, those vertices must be the two copies of v′. Thus, ℓ is homotopic to C on F.

In this case, we consider the 4-contraction of v at {v1, v3}. By the same argument
as in the first paragraph of Case 2, we may assume that v1 = v3. By the existence of
the loop ℓ that is homotopic to C, we see that ℓ is incident to the vertex v1. In this
case, because of the loop ℓ and the cycle C, there is no loop in G homotopic to the cycle
vv1v on F. Then as in the previous paragraph, by the 4-contraction of v at {v1, v3} and

the surface splitting at the obtained pinched vertex, we obtain a triangulation Ĝ on the
sphere without any loops. By Lemma 4, Ĝ has a Grünbaum coloring, and so does G by
Lemmas 11 (i) and 13.

v
v

v2

v4 v2

v4

v1
v3 v

v

v2

v4 v2

v4

v1
v3

v1
v3

v′v′

Figure 9: Contracting a 2-sided non-separating cycle C = vv2(= vv4) in G to have a
pinched vertex; the left is the toroidal case and the right is the Klein-bottle case.

Case 3. F is the Klein bottle.

As in the toroidal case, if G is a 6-regular triangulation, then we can obtain a
Grünbaum coloring of G by Theorem 10. So we may suppose that G has a 4-vertex,
say v with link v1v2v3v4v1. If v2 ̸= v4, then we can apply a 4-contraction of v at {v2, v4}
and use the same argument as in the toroidal case. So, we may assume that v2 = v4. In
this case, we must be careful in the case when the topology of the surface is broken by a
4-contraction. Let C be the 2-cycle vv2v. By Claim 14, C is essential. Then it suffices to
prove the following three cases.

Case (i). C is 2-sided and non-separating. By Lemma 12 (ii), the contraction of C
into a single vertex v′ produces an even triangulation, say G′, on a pinched surface Fp.
(See the direction from right to center in Figure 9.) Since C is 2-sided and non-separating,
Fp is the pinched torus. Then by the same way as in the toroidal case, we can show that
G has a Grünbaum coloring.

Case (ii). C is 2-sided and separating. Again by Lemma 12 (ii), the contraction of
C into a single vertex v′ produces an even triangulation, say G′, on a pinched surface F′

p.
Since C is 2-sided and separating, by the surface splitting at v′ in F′

p, we have two trian-
gulations on the projective plane. Note that both of those triangulations must be even
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by the Handshaking Lemma. As we have already shown in Case 1, since every even trian-
gulation on the projective plane has a Grünbaum coloring, so does G by Lemmas 11 (ii)
and 13.

Case (iii). C is 1-sided. By Lemma 12 (iii), the contraction of C into a single
vertex v′ produces an even triangulation, say G′, on the projective plane. Thus, G′ has a
Grünbaum coloring by Case 1, and hence so does G by Lemma 13.

Therefore, since G has a Grünbaum coloring in either case, the theorem holds.

3.3 Locally planar even triangulations

We conclude this section by showing that all even triangulations with sufficiently high
representativity admit Grünbaum colorings. We begin with two results on coloring of
even triangulations.

Theorem 15 (Hutchinson et al. [7]). For any orientable surface Sg, there exists a positive
integer N(Sg) such that every even triangulation G on Sg with r(G) ≥ N(Sg) is properly
vertex 4-colorable. □

Theorem 16 (Nakamoto [17]). For any nonorientable surface Nk, there exists a positive
integer N(Nk) such that every even triangulation G on Nk with r(G) ≥ N(Nk) is properly
vertex 5-colorable. Furthermore, χ(G) = 5 if and only if G is the face subdivision of some
even map H containing a 4-chromatic quadrangulation H ′ as a subgraph. □

Note that Thomassen [20] had showed the first statement of Theorem 16 before, with
more general form. Using Lemma 5 and Theorems 15 and 16, it is now easy to show that
locally planar even triangulations admit Grünbaum colorings.

Theorem 17. For any surface F, there is a positive integer N(F) such that every even
triangulation G on F with r(G) ≥ N(F) has a Grünbaum coloring.

Proof. Let G be an even triangulation on a surface F with high representativity. By
Theorems 15 and 16, every even triangulation on F with high representativity is either
properly vertex 4-colorable or the face subdivision of some even map. Therefore, G has a
Grünbaum coloring by Proposition 3 or Lemma 5.

4 Even triangulations with no Grünbaum coloring

In this section, we construct even triangulations with no Grünbaum coloring. Our con-
structions require a restricted dual form of the Parity Lemma (see [4, 8] for example), as
follows:

Lemma 18. Let G be a triangulation on a surface F and let C be a separating 3-cycle of
G. If G has a Grünbaum coloring, then the three edges of C are colored by three distinct
colors.
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We next introduce a Fisk triangulation, which is one with exactly two odd vertices
u and v such that u and v are adjacent. It is known that every Fisk triangulation has
no proper vertex 4-coloring [5]. Thus the sphere admits no Fisk triangulation, by the
Four Color Theorem. We will soon need the fact that the torus and the projective plane
each admit a simple Fisk triangulation, as shown in the left and the right of Figure 10,
respectively.

vu

v

u

a

a

b

b

c

c

Figure 10: Simple Fisk triangulations on the torus (left) and the projective plane (right);
the odd vertices are white.

Proposition 19. For any integer g ≥ 16, there exists a simple even triangulation on
Sg with no Grünbaum coloring, and for any integer k ≥ 4, there exists a simple even
triangulation on Nk with no Grünbaum coloring.

Proof. Let T be a simple Fisk triangulation on the torus with two odd vertices u and
v. (Such a triangulation actually exists, as in the left of Figure 10.) Let G be the
triangulation on S5 dual to the snark shown in Figure 11. (In the figure, each square hole
corresponds to a handle of the surface. We get handles by identifying opposite arrows.)
Then G has no Grünbaum coloring. Moreover, by Proposition 2 (ii), we see that G is
simple since Kochol’s snark shown in Figure 11 is 3-connected and has representativity 3.
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Figure 11: The snark on S5 constructed by Kochol [10].

Observe that G has exactly twenty-two odd vertices v1, v2, . . . , v22 corresponding to
the odd faces labeled in Figure 11, and there is a matching M = {e1, e2, . . . , e11} of G such
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that each edge ei ∈ M connects two odd vertices v2i−1 and v2i for i ∈ {1, 2, . . . , 11}. Now
identify a face containing the edge uv in T with a face in G containing an edge xy ∈ M , so
that uv and xy are identified. In this case, the resulting graph H is a simple triangulation
on S6 with exactly twenty odd vertices and no Grünbaum coloring by Lemma 18. Thus, by
repeating these operations, we produce an even triangulation on S16 with no Grünbaum
coloring. (Clearly, the triangulation is simple.)

For the nonorientable case, note that K6 has six odd vertices that form a perfect
matching. By identifying a face of a simple Fisk triangulation on N1 with a face of K6

on N1 and iterating as above, we finally have a simple even triangulation on N4 with no
Grünbaum coloring.

By identifying two faces of two distinct simple even triangulations on surfaces of genus
g1 and g2, we get a simple even triangulation on the surface of genus g1 + g2, and so, for
any integer g ≥ 16 (resp., k ≥ 4), we can construct a simple even triangulation on Sg

(resp., Nk) with no Grünbaum coloring from the one on S16 (resp., N4) and any simple
even triangulation of a surface of an appropriate (nonorientable) genus.

Proposition 20. For any integer g ≥ 3, there exists a 2-representative even triangu-
lation on Sg with no Grünbaum coloring, and for any integer k ≥ 3, there exists a 2-
representative even triangulation on Nk with no Grünbaum coloring.

Proof. To prove the proposition, we construct a snark on Sg (resp., Nk) with representa-
tivity 2 for integers g ≥ 3 (resp., k ≥ 3).

f

f ′

Figure 12: Embeddings of the Petersen graph on the torus and the Klein bottle.

We first consider the orientable case. Embed the Petersen graph on the torus as shown
at the left in Figure 12. In the embedding, there are four odd faces, so that its dual is
a triangulation with exactly four odd vertices. Thus, as in the proof of Proposition 19,
we produce an even triangulation G on Sg for g ≥ 3 with no Grünbaum coloring and
r(G) = 2 by using Fisk triangulations on the torus.

Next, we prove the nonorientable case. Embed the Petersen graph on the Klein bottle
as shown at the right in Figure 12. Since there are exactly two adjacent odd faces f and f ′

in the embedding, its dual is a Fisk triangulation on the Klein bottle. Therefore, following
the above case, we have an even triangulation G on Nk with no Grünbaum coloring and
r(G) = 2 for any k ≥ 3, using Fisk triangulations on the Klein bottle.
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Proposition 21. For any integer g ≥ 2, there exists a 1-representative even triangu-
lation on Sg with no Grünbaum coloring, and for any integer k ≥ 3, there exists a 1-
representative even triangulation on Nk with no Grünbaum coloring.

Proof. First we see that the Petersen graph has 1-representative embeddings on S2 and
N3 so that the boundary walk of each face has even length (see Figure 13). So, by
Proposition 2, the dual graphs are 1-representative even triangulations on S2 and N3 with
no Grünbaum coloring. Therefore, as in the proof of Propositions 19 and 20, we get even
triangulations G on Sg (resp., Nk) for any g ≥ 2 (resp., k ≥ 3) with no Grünbaum coloring
and r(G) = 1.
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Figure 13: Embeddings of the Petersen graphs on S2 and N3 with representativity 1.

5 Concluding Remarks

We have investigated the existence of Grünbaum colorings of even triangulations with a
given representativity, or equivalently, the existence of maps of snarks with all faces of
even length and a given representativity. As our main results we show that there are
no polyhedral even embeddings of snarks in S1, N1, and N2, and that for each surface
F there is a constant N(F) such that no snark embeddable in F as an even map can
have representativity N(F). On the other hand, we provide a method for decreasing the
number of odd vertices in a polyhedral triangulation, which enables us to prove that
almost all surfaces admit a polyhedral even embedding of some snark. Embeddings, and
in particular polyhedral embeddings, of snarks are still far from being well understood
and there are several open problems that seem worth investigating.

Despite the results of Albertson et al. [1] and Kochol [10], Grünbaum’s conjecture is
still open for S2,S3, and S4, and for toroidal triangulations with chromatic number 5.
On the other hand, Theorem 1 implies that every toroidal even triangulation admits a
Grünbaum coloring. Therefore, if there is a toroidal 3-representative triangulation without
a Grünbaum coloring, then it must have chromatic number 5 and a vertex of odd degree.
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Hutchinson et al. [7, Page 226] asked whether there is an absolute constant c such
that every even triangulation on an orientable surface with representativity at least c
is 4-colorable, and in particular, whether c = 100 has the property. An affirmative
answer to this question would imply that even maps of snarks cannot have arbitrarily
high representativity. On the other hand, it is not known whether there is any map,
even or not, of a snark with representativity at least 4 in any surface, orientable or not.
Indeed, Robertson posed a problem whether there is an absolute constant c′ such that
every triangulation on a surface with representativity at least c′ has a Grünbaum coloring;
see [14, Problem 5.5.17].
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