Matching extension missing vertices and edges in triangulations of surfaces

Ken-ichi Kawarabayashi1
Kenta Ozeki2

National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
and
JST, ERATO, Kawarabayashi Large Graph Project, Japan

Michael D. Plummer3
Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37240, USA

ABSTRACT

Let G be a 5-connected triangulation of a surface Σ different from the sphere, and let $\chi = \chi(\Sigma)$ be the Euler characteristic of Σ. Suppose that $V_0 \subseteq V(G)$ with $|V(G) - V_0|$ even and M and N are two matchings in $G - V_0$ of sizes m and n respectively such that $M \cap N = \emptyset$. It is shown that if the pairwise distance between any two elements of $V_0 \cup M \cup N$ is at least 5 and the face-width of the embedding of G in Σ is at least $\max\{20m - 8\chi - 23, 6\}$, then there is a perfect matching M_0 in $G - V_0$ containing M such that $M_0 \cap N = \emptyset$.

Keywords: Triangulation, matching extension, representativity, face-width, genus

1 Introduction

A set M of edges in a graph G is a matching if no two members of M share a vertex. A matching M is perfect if every vertex of G is covered by an edge of M. Let $n \geq 0$ be an integer. A connected graph G is said to be 0-extendable if it has a perfect matching and, for $n \geq 1$, a connected graph G having at least $2n + 2$ vertices is said to be n-extendable if G has a perfect matching and every matching of size n in G extends to (i.e., is a subset of) a perfect matching in G. More generally, if m and n are two non-negative integers, then a connected graph G is said to have property $E(m, n)$ if for every pair of matchings M and N with $|M| = m$ and $|N| = n$ such that $M \cap N = \emptyset$, there is a perfect matching M_0 in G such that $M \subseteq M_0$ and $N \cap M_0 = \emptyset$.

A surface is a connected compact Hausdorff space that is locally homeomorphic to an open disc in the plane. We denote the Euler characteristic of a surface Σ by $\chi = \chi(\Sigma)$. It is well-known that any graph H with at least three vertices embedded in a surface Σ with Euler characteristic χ satisfies that $|E(H)| \leq 3|V(H)| - 3\chi$, and furthermore $|E(H)| \leq 2|V(H)| - 2\chi$ if H is bipartite. The face-width (or representativity) of a graph G embedded in the surface Σ different from the sphere is the smallest number k such that

1Email address: k_keniti@nii.ac.jp
2This work was in part supported by JSPS KAKENHI Grant Number 25871053 and by Grant for Basic Science Research Projects from The Sumitomo Foundation.
Email address: ozeki@nii.ac.jp
3Email address: michael.d.plummer@vanderbilt.edu
Let Σ contains a non-contractible closed curve γ with $|G \cap \gamma| = k$, where $G \cap \gamma$ is the set of points on Σ in which γ intersects G. We shall denote the face-width of an embedded graph G by $\text{fw}(G)$.

In [10] (and independently in [9]) it was shown that every 5-connected planar graph with an even number of vertices is 2-extendable. In [4] it was shown that any 5-connected triangulation with an even number of vertices of a surface of genus $g > 0$ with face-width sufficiently large is 2-extendable. In [7], the preceding result was generalized in three ways: (a) the assumption that G is a triangulation was deleted; (b) the result was extended to non-orientable surfaces and (c) the bound on face-width required was reduced from exponential to linear.

Let G be a graph. The distance between two vertices x and y in G, denoted by $d_G(x, y)$, is the length of a shortest path in G connecting them. If there is no possibility of confusion, we simply write $d(x, y)$. Extending this notation, the distance between a vertex x and an edge e in G is defined as the minimum of $d(x, y_1)$ and $d(x, y_2)$, where y_1 and y_2 are the endvertices of e, and the distance between two edges e and f in a graph G is defined as the minimum of $\text{dist}_G(x, y)$ taken over all of the four pairs of vertices x and y such that x is an endvertex of e and y is an endvertex of f.

Let us now call a matching M a distance k matching if the distance between any pair of edges in M is at least k. A graph G is said to be distance k m-extendable if every distance k matching of size m extends to a perfect matching in G. In [3] it was shown that if G is a 5-connected planar (or projective planar) triangulation of even order and if m is any non-negative integer with $m \leq (|V(G)| - 2)/2$, then G is distance 5 m-extendable. Also, if M is a distance 4 matching of size no greater than 7, then it too extends to a perfect matching. In [1] the same result was obtained for the torus and the Klein bottle. In [5] it was shown that if G is a 5-connected planar triangulation with an even number of vertices, then it is, in fact, distance 4 m-extendable for any $m \leq (|V(G)| - 2)/2$ and distance 3 m-extendable for all m with $0 \leq m \leq 9$. Moreover, these results are best possible.

5-connected triangulations embedded in surfaces with large face-width have received considerable attention in the past. Yu [11] showed that such graphs always have a Hamilton cycle and the first author [6] later obtained an even stronger result, namely, that such graphs are, in fact, Hamiltonian-connected. In the present paper, we present a distance 5 matching result for the property $E(m, n)$ for 5-connected triangulations embedded in a surface (orientable or non-orientable) with large face-width. Connectivity 5 is crucial here in that, using examples presented in [2], one can easily construct 4-connected even triangulations of genus g having arbitrarily large face-width that contain two edges arbitrarily far apart that cannot be extended to a perfect matching.

In this paper, we consider the property $E(m, n)$ in the graph obtained by deleting some vertices from a 5-connected triangulation embedded in a surface with large face-width. We present an exact statement in the next section, but before that, we define some terminology used in this paper. For a graph G, a vertex set V_0 of G, and an edge set N of G, we denote by $G - V_0 - N$ the graph obtained from G by deleting all vertices in V_0 and all edges in N (leaving the endvertices of each edge in N). We denote the set of endvertices of an edge in N by $V(N)$.

2 The Main Theorem

Theorem 2.1 Let Σ be a surface different from the sphere with Euler characteristic $\chi = \chi(\Sigma)$, let G be a 5-connected triangulation embedded in Σ, and suppose $V_0 \subseteq V(G)$ is
such that $|V(G) - V_0|$ is even. Suppose that M and N are two matchings in $G - V_0$ with $|M| = m$ and $|N| = n$ such that $M \cap N = \emptyset$ and the distance between any two distinct members of $V_0 \cup M \cup N$ is at least 5. Finally, suppose $fw(G) \geq \max\{20m - 8\chi - 23, 6\}$. Then $G - V_0$ contains a perfect matching M_0 that contains M and such that $M_0 \cap N = \emptyset$.

For the proof of Theorem 2.1, we use the following lemma.

Lemma 2.2 [8, Lemma 6] Let G be a 5-connected graph embedded in a surface Σ. If $fw(G) \geq 5$, then G does not contain $K_{2,3}$ as a subgraph.

Proof of Theorem 2.1: Let G, V_0, M and N be as in the hypothesis. Let $G' = G - V_0 - N$ and let $T = V_0 \cup N$.

Claim 2.1: Every non-contractible closed curve γ in Σ satisfies $|G \cap \gamma| \leq 2|G' \cap \gamma|$.

Consider the face-chain in G' through which γ passes. Let F be any face in this face-chain. Since G is a triangulation, if there are at least two elements of T lying in the interior of F, then we can find two elements t_1 and t_2 of T with $d(t_1, t_2) \leq 2$, a contradiction. So each face F in the face-chain contains at most one element of T. Suppose that F_{i-1}, F_i, F_{i+1} is a subsequence of consecutive faces in the face-chain and that w_i is a vertex of attachment of F_{i-1} and F_i, while w_{i+1} is a vertex of attachment of F_i and F_{i+1}. Again, since G is a triangulation and F_i contains at most one element of T, it follows that $d(w_i, w_{i+1}) \leq 2$. Then we have a non-contractible face-chain in G of length no more than twice that of the face-chain in G', and the claim follows.

![Figure 1](image.png)

Figure 1:

Claim 2.2: G' is 4-connected.

Suppose not. Let W' be a minimum cut in G' and let C be a component of $G' - W'$. Note that $|W'| \leq 3$. Consider the graph $G - C$ and the region on Σ obtained by the deletion of C, and let C' be the boundary of the region. Since G is 5-connected, C' contains at least five vertices. If the distance 5 hypothesis is ignored, in Figure 1 we show the various ways the contractible cycle C' can interact with members of the set T (shown in red). We let $W' = \{w_1, w_2, w_3\}$.
Since \(\text{fw}(G) \geq 6 \), at least one of the components of \(C' \) contains at least two members of \(T \). But regardless of how the members of \(T \) interact with the component, since \(G \) is a triangulation, there must be two members of \(T \) at distance no more than 2 from each other in \(G \), a contradiction. This proves Claim 2.2. ■

Suppose now that \(G, V_0, M \) and \(N \) satisfy the hypotheses of the theorem, but that there is no perfect matching in \(G' \) containing \(M \). Let \(|M| = m \). Then by Tutte’s theorem, if \(G_0 = G' - V(M) \), there is a set \(S_0 \subseteq V(G_0) \) such that \(c_0(G_0 - S_0) \geq |S_0| + 2 \). (Here \(c_0(G_0 - S_0) \) denotes the number of odd components of \(G_0 - S_0 \).) Let \(S = S_0 \cup V(M) \). So \(|S| = |S_0| + 2m \).

By Claim 2.2, any odd component of \(G' - S \) must have at least four vertices of attachment in \(S \). We now partition the odd components of \(G' - S \) into two sets \(O_4 \) and \(O_5 \), where \(O_4 \) denotes the set of odd components that have exactly four neighbors in \(S \) and \(O_5 \) denotes the set of remaining odd components, which have at least five neighbors in \(S \).

Let \(C \in O_4 \). Since \(G \) is 5-connected, \(C \) must have a neighbor that is either in \(V_0 \) or an endvertex of an edge in \(N \). If a neighbor of \(C \) in \(G' \) is contained in \(V(M) \), then together with the fifth vertex of attachment of \(C \), it violates the distance 5 hypothesis. Therefore, all of the four neighbors of \(C \) in \(G' \) are contained in \(S_0 \). Since \(G \) is a triangulation and since \(\text{fw}(G) \geq 6 \), the five neighbors of \(C \) in \(G \) must form a cycle and this cycle must be contractible.

Now suppose \(C_1 \) and \(C_2 \) are two members of \(O_4 \) that share at least one neighbor in \(S_0 \). Let \(x \) denote a common neighbor of \(C_1 \) and \(C_2 \) in \(S_0 \). We will show that \(x \) cannot be a neighbor of a third member of \(O_4 \).

Suppose to the contrary that there is a third odd component \(C_3 \) belonging to \(O_4 \) that has \(x \) as a vertex of attachment. Recall that for \(i = 1, 2, 3 \), the neighbors of \(C_i \) must form a 5-cycle, say \(C'_i \), by the triangulation assumption on \(G \) and the distance hypothesis on \(T \). Note that \(C'_i \) must contain precisely four vertices from \(S_0 \), whereas the fifth vertex, call it \(t_i \), must belong to \(V_0 \) or else is an endvertex of an edge in \(N \). Furthermore, if \(t_i \) is an endvertex of an edge in \(N \), say \(e \), then \(e \) must connect \(t_i \) and a vertex in \(C_i \). Note that \(t_i \neq x \). We then claim the following.

Claim 2.3: \(t_1 = t_2 = t_3 \).

Suppose not. In particular, suppose that \(t_1 \neq t_2 \). It is then clear that along with \(C'_1 \) and \(C'_2 \), we have \(d_G(t_1,t_2) \leq 4 \), and hence \(t_1 \) and \(t_2 \) violate the distance 5 hypothesis. The other cases can be handled using the same reasoning and hence Claim 2.3 holds. ■

As mentioned before, if \(t_i \) is an endvertex of an edge in \(N \), then the edge must connect \(t_i \) and a vertex in \(C_i \). Therefore, Claim 2.3 directly implies that \(t_i \) is a vertex in \(V_0 \). Let \(t = t_1 = t_2 = t_3 \).

Recall that for each \(i \in \{1, 2, 3\} \), \(C'_i \) contains exactly five vertices, two of which are \(x \) and \(t \in V_0 \). Then \(x \) and \(t \) appear either consecutively in \(C'_i \) or non-consecutively in \(C'_i \). Since \(G \) is a triangulation, if \(x \) and \(t \) appear consecutively in \(C'_i \), then \(xt \in E(G) \) and there exists a vertex \(w_i \) in \(C_i \) such that \(x, t, w_i \) form a triangular face of \(G \). On the other hand, if \(x \) and \(t \) appear non-consecutively in \(C'_i \), then there is a (unique) vertex in \(C'_i \) that appears exactly between \(x \) and \(t \). We call the vertex \(w_i \). In either case, \(w_i \) is a common neighbor of \(x \) and \(t \).

If \(w_1, w_2 \) and \(w_3 \) are all distinct, then we can find \(K_{2,3} \) in \(G \) as a subgraph, contradicting Lemma 2.2. Therefore, at least two of them coincide, and by symmetry, we may assume
that \(w_1 = w_2 \). By the definition of \(w_i \), we see that \(x \) and \(t \) appear non-consecutively in \(C'_1 \) and \(C'_2 \), and hence \(w_1 = w_2 \in V(C'_1) \cap V(C'_2) \). Thus, we have the situation in Figure 2. However, since \(t_3 = t \), no matter how \(C'_3 \) is configured with respect to \(C'_1 \) and \(C'_2 \), there must be a 3-cut, a 4-cut, a non-contractible 3-cycle, or a non-contractible 4-cycle. This contradicts either the assumption that \(G \) is 5-connected or the assumption that \(fw(G) \geq 6 \).

![Figure 2](image)

So we have shown that

each vertex in \(S_0 \) is a neighbor of at most two components in \(O_4 \). \((*) \)

We now construct a bipartite graph \(H \) with bipartition \(\{ S, O_4 \cup O_5 \} \) such that \(x \in S \) and \(C \in O_4 \cup O_5 \) are adjacent in \(H \) if and only if \(x \) is a neighbor of \(C \) in \(G' \). In other words, \(H \) is obtained from \(G' \) by contracting each odd component in \(O_4 \cup O_5 \) to a separate single vertex, and deleting any even components of \(G' - S \), all edges spanned by \(S \) and any multiple edges thus formed. In particular, \(H \) is still embedded in the surface \(\Sigma \) (but not necessarily as a 2-cell embedding).

Let \(H_0 \) result from \(H \) by deleting all vertices in \(V(M) \) and all vertices corresponding to components in \(O_5 \). Thus, \(H_0 \) is a bipartite graph with bipartition \(\{ S_0, O_4 \} \). Since each component in \(O_4 \) has exactly four neighbors in \(S_0 \), we have \(|E(H_0)| = 4|O_4| \). On the other hand, it follows from \((*) \) that each vertex in \(S_0 \) can be adjacent to at most two components in \(O_4 \). This implies \(|E(H_0)| \leq 2|S_0| \). Hence \(4|O_4| \leq 2|S_0| \), or

\[
|O_4| \leq \frac{1}{2}|S_0|. \quad (2.1)
\]

Recall that \(O_4 \cup O_5 \) is the set of all odd components of \(G' - V(M) - S_0 \) and \(c_o(G' - V(M) - S_0) \geq |S_0| + 2 \), so we have

\[
|O_4| + |O_5| \geq |S_0| + 2. \quad (2.2)
\]

Back in the graph \(H \), the number of edges joining \(S \) and all the odd components in \(O_4 \cup O_5 \) is at least \(4|O_4| + 5|O_5| \), as viewed from each component in \(O_4 \cup O_5 \). Now \(|V(H)| = |S_0| + 2m + |O_4| + |O_5| \). Noting that \(H \) is a bipartite graph embedded on the surface \(\Sigma \), by Euler’s Formula,

\[
|E(H)| \leq 2|V(H)| - 2\chi = 2(|S_0| + 2m + |O_4| + |O_5|) - 2\chi.
\]

Recall that \(\chi = \chi(\Sigma) \) is the Euler characteristic of \(\Sigma \). So

\[
4|O_4| + 5|O_5| \leq 2|S_0| + 4m + 2|O_4| + 2|O_5| - 2\chi.
\]

Thus, using inequalities (2.1) and (2.2), we obtain
\[
2|S_0| + 4m - 2\chi \geq 2|O_4| + 3|O_5|
\]
\[
= 3(|O_4| + |O_5|) - |O_4|
\]
\[
\geq 3(|S_0| + 2) - \frac{1}{2}|S_0|
\]
\[
= \frac{5}{2}|S_0| + 6,
\]
or
\[
|S_0| \leq 8m - 4\chi - 12.
\]
Hence
\[
|S| = |S_0| + 2m \leq 10m - 4\chi - 12. \quad (2.3)
\]

Now again consider the bipartite graph \(H\) with bipartition \(\{S, O_4 \cup O_5\}\), where \(S_0 = S - V(M)\) is a Tutte set of \(G' - V(M)\).

Claim 2.4: If \(H\) is non-planar, then there must exist a non-contractible curve \(\gamma\) in the surface \(\Sigma\) such that \(\gamma \cap H \subseteq S\).

Since \(H\) is non-planar, we let \(\gamma\) be a non-contractible closed curve such that \(\gamma \cap H \subseteq V(H)\). Suppose that \(\gamma\) passes through a vertex \(u\) of \(H\) that is not in \(S\). Let \(f_1\) and \(f_2\) be two faces such that \(\gamma\) passes through \(f_1, u\) and \(f_2\) consecutively in this order. Then we can modify \(\gamma\) to become a new curve \(\gamma'\) so that \(\gamma'\) passes through neighbors of \(u\) when passing from \(f_1\) to \(f_2\). (See Figure 3.)

![Figure 3](image-url)

Repeating this process for all vertices passed through by \(\gamma\) that are not in \(S\) and call the resulting curve \(\gamma_0\). This curve \(\gamma_0\) serves to prove the Claim 2.4.

Let \(M' = \{f \in M : f\) is incident with at least two components in \(O_4 \cup O_5\}\),
and \(V_0' = \{v \in V_0 : v\) is a neighbor of at least one component in \(O_4 \cup O_5\}\),
where \(f \in M\) is incident with a component in \(O_4 \cup O_5\) if at least one of endvertices of \(f\) is a neighbor of the component.

Then consider the bipartite graph \(H'\) with bipartition \(\{S_0 \cup V(M') \cup V_0', O_4 \cup O_5\}\). Note that \(H - V(M - M') = H' - V_0'\). Similarly to the case of \(H, H'\) is embedded in the surface \(\Sigma\) (not necessarily as a 2-cell embedding).

Assume that \(H'\) is non-planar. Then there must exist a non-contractible closed curve \(\gamma\) in \(\Sigma\) such that \(\gamma \cap H' \subseteq V(H')\). Then deleting all vertices in \(V_0'\) and adding some
edges in M' if necessary, we can regard the non-contractible closed curve γ as satisfying $\gamma \cap H \subseteq V(H)$. Then by Claim 2.4, there exists a non-contractible closed curve γ_0 in Σ such that $\gamma_0 \cap H \subseteq S$. Now reinflate each vertex in H corresponding to $O_4 \cup O_5$ to its original odd component of $G' - S$ so as to recover the original G' from $H' - V_0'$, retaining the curve γ_0 in the process. So $\gamma_0 \cap G' \subseteq S$. Then Claim 2.1 and the inequality (2.3) imply that
\[
|\gamma_0 \cap G| \leq 2|\gamma_0 \cap G'| \leq 2|S| \leq 20m - 8\chi - 24.
\]
But this contradicts the assumption on $\text{fw}(G)$.

So H' must be planar. Let $m' = |M'|$ and $\ell = |O_4| + |O_5|$. Note that $\ell \geq |S_0| + 2$. Then $|E(H')| \leq 5\ell$ (since G is 5-connected) and $|E(H')| \leq 2(|S_0| + 2m' + |V_0'| + \ell) - 4$ (by the Euler formula), so $3(|S_0| + 2) \leq 3\ell \leq 2|S_0| + 4m' + 2|V_0'| - 4$, and hence
\[
|S_0| \leq 4m' + 2|V_0'| - 10. \quad (2.4)
\]

For each $f \in M'$ and $v \in V_0'$, let
\[
Q(f) = \{s \in S_0 : d_G(f, s) \leq 2\},
\]
and
\[
Q(v) = \{s \in S_0 : d_G(v, s) \leq 2\}.
\]
By the distance 5 hypothesis, we see that $Q(f) \cap Q(f') = \emptyset$, $Q(f) \cap Q(v) = \emptyset$, and $Q(v) \cap Q(v') = \emptyset$ for any $f, f' \in M'$ with $f \neq f'$ and $v, v' \in V_0'$ with $v \neq v'$. We next show that
\[
|Q(f)| \geq 4 \text{ for any } f \in M', \text{ and } |Q(v)| \geq 2 \text{ for any } v \in V_0'.
\]
In fact, this then directly implies $|S_0| \geq 4m' + 2|V_0'|$, a contradiction of inequality (2.4), and the proof of Theorem 2.1 is complete.

Let $f \in M'$, and let C_1 and C_2 be two components in $O_4 \cup O_5$ that are incident with f. By planarity and since G is a triangulation, the neighbors of C_1 surround C_1 in cyclic order C_1'. Then consider C_1' forward and backward with distance at most two from endvertices of f. Note that the distance 5 hypothesis implies that all of these vertices are contained in S_0. Therefore, if there exist at least four such vertices in C_1', then $|Q(f)| \geq 4$ and we are done. (See the left diagram in Figure 4. The vertices in squares belong to $Q(f)$.) Thus, we may assume that there exist only at most three such vertices in C_1', which directly implies that f is an edge in C_1' and C_1' is a 5-cycle. The structure surrounding f for C_2 must be similar, and hence the structure surrounding f must have the appearance shown in the right in Figure 4. This contradicts the assumption that G is 5-connected.

Let $v \in V_0'$ and let C_1 be a component in $O_4 \cup O_5$ of which v is a neighbor. Similarly (or in fact even more simply), we can find two vertices in C_1' that are adjacent with v. This shows $|Q(v)| \geq 2$, and we are done. \qed

\section*{Acknowledgments}

The authors would like to thank the anonymous referees for their helpful comments, which considerably improved the readability of this paper.
Figure 4: Structures surrounding f.

References

