Plane triangulations without a spanning Halin subgraph: Counterexamples to the Lovász-Plummer conjecture on Halin graphs

Guantao Chen1* Hikoe Enomoto2 Kenta Ozeki3 4 † Shoichi Tsuchiya5‡

1Dept. of Math & Stat, Georgia State University, Atlanta, GA 30303, USA
2Graduate School of Economics, Waseda University, 1-6-1 Nishi-Waseda Shinjuku-ku, Tokyo 169-8050, Japan
3National Institute of Informatics, Tokyo 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
4JST, ERATO, Kawarabayashi Large Graph Project
5School of Network and Information, Shenshu University, 2-1-1 Higashimita, Tama-ku, Kawasaki-shi, Kanagawa, 214-8580, Japan.

This paper is dedicated to Prof. Rudolf Halin who died on the 14th November, 2014.

Abstract

A Halin graph is a simple plane graph consisting of a tree without degree 2 vertices and a cycle induced by the leaves of the tree. In 1975, Lovász and Plummer conjectured that every 4-connected plane triangulation has a spanning Halin subgraph. In this paper, we construct an infinite family of counterexamples to the conjecture.

Keywords: Halin graph, spanning Halin subgraph, triangulation.

AMS 2010 Mathematics Subject Classification. 05C10.

*This research is partially supported by an NSA grant.
†This research is partially supported by JSPS KAKENHI Grant number 25871053, and by Grant for Basic Science Research Projects from The Sumitomo Foundation.
‡Email address: s.tsuchiya@isc.senshu-u.ac.jp
1 Introduction

A graph is called planar if it can be embedded in the plane without edge-crossing, and such an embedding is called a plane graph. A Halin graph is a simple plane graph $H = T \cup C$ consisting of a tree T with no vertices of degree 2 and a cycle C induced by the leaves of the tree T. The family of Halin graphs is a natural generalization of wheels, where T is a star. In his study of edge-minimum 3-connected plane graphs, Halin [6] constructed this family of graphs, named Halin graphs by Lovász and Plummer [7]. Inspired by Tutte’s well-known result that every 4-connected plane graph contains a Hamilton cycle, Lovász and Plummer [7] in 1975 conjectured that every 4-connected plane triangulation has a spanning Halin subgraph, where a plane triangulation is a plane graph such that all its faces are triangles.

It was proved that every Halin graph is Hamiltonian [3] (see also [2, 8]), and hence the existence of a Hamilton cycle is a necessary condition for a graph to have a spanning Halin subgraph. Also, by the definition of Halin graphs, a spanning tree with no vertices of degree 2 is needed for the existence of spanning Halin subgraphs. Albertson, Berman, Hutchinson and Thomassen [1] proved that every plane triangulation has such a spanning tree (see also [4, 5]). This result and Tutte’s well-known result give some hope for the Lovász-Plummer conjecture. However, the main result of this paper disproves the conjecture based upon a certain family \mathcal{S} of graphs constructed below:

Construction of a family \mathcal{S}: For any three integers $n_1, n_2, n_3 \geq 5$, we construct the graph G_{n_1,n_2,n_3} as follows. Let Q be a plane embedding of $K_{2,4}$ with bipartite partition $V = \{v_1, v_2\}$ and $W = \{w_1, w_2, w_3, w_4\}$. In its embedding, Q has exactly four faces $F_i = v_1w_1v_2w_{i+1}v_1$ for $i = 1, 2, 3, 4$, where w_5 is regarded as w_1. In each face F_i for $i = 1, 2, 3$, we add a path P_i of length n_i connecting v_1 and v_2, and add all possible edges with one endvertex in $\{v_1, w_{i+1}\}$ and the other endvertex in $V(P_i)$. Denote by G_{n_1,n_2,n_3} the resulting graph. Note that all faces of G_{n_1,n_2,n_3} other than F_1 are triangular faces (see Figure 1, where solid lines present edges of Q). Let $G^*_{n_1,n_2,n_3}$ be a graph obtained from G_{n_1,n_2,n_3} by identifying w_1 and w_4 (and hence we identify edges w_1v_j and w_4v_j for $j = 1, 2$). Let $\mathcal{S} = \{G^*_{n_1,n_2,n_3} \mid n_1, n_2, n_3 \geq 5\}$. Also, let Q^* be $K_{2,3}$ of $G^*_{n_1,n_2,n_3}$ corresponding to Q in G_{n_1,n_2,n_3}.

Clearly, each graph $G^*_{n_1,n_2,n_3} \in \mathcal{S}$ has $n = n_1 + n_2 + n_3 + 2$ vertices, $3(n_1 + n_2 + n_3)$ edges, and $2(n_1 + n_2 + n_3)$ triangular faces. In particular, the smallest graph in \mathcal{S} is $G^*_{5,5,5}$, which has 17 vertices. The following is the main result of this paper.

Theorem 1 For any triple of integers $n_i \geq 5$ with $i = 1, 2, 3$, the graph $G^*_{n_1,n_2,n_3} \in \mathcal{S}$ is a 4-connected plane triangulation without a spanning Halin subgraph.

The proof of Theorem 1 will be given in Section 3 based on some necessary conditions concerning graphs with a spanning Halin subgraph which are given in Section 2.
2 Preliminaries

In this section, we present a few properties of graphs having a spanning Halin subgraph, which will be used to prove certain graphs do not contain such a subgraph. We use G for both a graph G and the vertex set $V(G)$ if there is no confusion arises. Let G be a plane graph having a spanning Halin subgraph $H = T \cup C$. By Jordan's closed curve theorem, the cycle C separates the plane into two regions: the interior region $\text{Int}(C)$ and the exterior region $\text{Ext}(C)$. Since T is a spanning tree of G, $T - V(C)$ is connected. Thus all vertices of $G - V(C)$ lie in one region. Throughout this paper, we always assume that $\text{Int}(C)$ contains the vertices of $G - V(C)$. Hence, the following statements hold.

Lemma 2 If a plane graph G contains a spanning Halin subgraph $H = T \cup C$, then $\text{Ext}(C)$ contains no vertices of $T - V(C)$ and each vertex on C is adjacent to exactly one vertex in $T - V(C)$, which lies in $\text{Int}(C)$.

Lemma 3 Let G be a graph containing a spanning Halin subgraph $H = T \cup C$ and let X be a vertex cut of G. If D is a component of $G - X$ with $|D| \geq |X| - 1$, then $C \cap D \neq \emptyset$. Consequently, if every component of $G - X$ contains at least $|X| - 1$ vertices, then $|C \cap X| \geq 2$.

Proof. Suppose to the contrary that $D \cap C = \emptyset$, that is, $d_T(v) \geq 3$ for every $v \in D$. For $V(D) \subset V(T)$, the neighborhood $N_T(D)$ is the subset of $V(T) - V(D)$ each of whose vertices is adjacent to at least one member of D in T. Since T is a tree, we have

$$|N_T(D)| \geq \sum_{v \in D} d_T(v) - 2|E(T \cap D)| \geq 3|D| - 2(|D| - 1) \geq |D| + 2.$$

Hence, $|D| + 1 \geq |X| \geq |N_T(D)| \geq |D| + 2$, a contradiction. \qed

A vertex cut X of a graph is called *minimal* if every proper subset of X is no longer a vertex cut of the graph. The following is a well-known fact on a minimal vertex cut of plain triangulations (and hence we use it without a proof).
Fact 4 In a plane triangulation, every minimal vertex cut induces a cycle.

3 Proof of Theorem 1

First, we show that every graph G in \mathcal{G} is a 4-connected triangulation. By the construction, G is a plane triangulation. So, it suffices to show the following claim.

Claim 3.1 Every graph $G \in \mathcal{G}$ is 4-connected.

Proof. Let $G \in \mathcal{G}$. Following the construction of G, every 3-cycle of G contains two consecutive vertices of P_i for some $1 \leq i \leq 3$, which in turn shows that no 3-cycle forms a vertex cut. So, G is 4-connected by Fact 4. □

Now we show that each member in \mathcal{G} contains no spanning Halin subgraph. Let $G := G^*_{n_1,n_2,n_3} \in \mathcal{G}$ with $n_i \geq 5$ for $1 \leq i \leq 3$. Assume, to the contrary, that G has a spanning Halin subgraph $H = T \cup C$, where $V(C)$ consists of all leaves of T. We recall that Q^* is a planar embedding of $K_{2,3}$ and P_i is a v_1-v_2 path inside the quadrangle $v_1w_iw_{i+1}v_1$ for $i = 1, 2, 3$. For each $i = 1, 2, 3$, let $Q_i := P_i - \{v_1, v_2\}$ and let $X_i = V(F_i) = \{v_1, v_2, w_i, w_{i+1}\}$.

Claim 3.2 For each $i = 1, 2, 3$, $|C \cap X_i| \geq 2$ and $C \cap Q_i \neq \emptyset$.

Proof. From the construction of $G^*_{n_1,n_2,n_3}$, $G - X_i$ contains exactly two components with vertex sets Q_i and $Q_{i-1} \cup Q_{i+1} \cup \{w_{i-1}\}$, respectively. Consequently, both components of $G - X_i$ contain at least $|Q_i| \geq 4 > |X_i| - 1$ vertices. By Lemma 3, $C \cap Q_i \neq \emptyset$ and $|C \cap X_i| \geq 2$. □

Claim 3.3 $|\{w_1, w_2, w_3\} \cap C| \geq 2$.

Proof. Suppose to the contrary that $|\{w_1, w_2, w_3\} \cap C| < 2$. Then we may assume that $w_i \notin V(C)$ for $i = 1, 2$. By Claim 3.2, $Q_1 \cap C \neq \emptyset$. Since C is a cycle and P_i is an induced path in $G - \{w_1, w_2\}, C \supseteq P_i$. Thus, w_1 and w_2 lie in two different regions of the plane divided by the Jordan curve C, which contradicts the fact that $w_1, w_2 \in \text{Int}(C)$. □

Claim 3.4 Let $xy \in E(Q_i)$ for some $i = 1, 2, 3$. If $\{x, y\} \subseteq V(G) - V(C)$, then $xy \in E(T)$, and either $\{xw_i, yw_{i+1}\} \subseteq E(T)$ or $\{xw_{i+1}, yw_i\} \subseteq E(T)$.

Proof. Since $x, y \notin V(C)$, both $d_T(x) \geq 3$ and $d_T(y) \geq 3$ hold. Assume without loss of generality that $wxyz$ is a subpath of P_i, i.e., we assume that, along P_i, w is the predecessor
of x, x is the predecessor of y and z is the successor of y. Then, we have

$$N_G(x) = \{w, w_{i+1}, w, y\} \text{ and } N_G(y) = \{w, w_{i+1}, x, z\}.$$

If $xy \notin E(T)$, then $xw, xw_{i+1}, yw, yw_{i+1} \in E(T)$, which in turn shows that T contains a 4-cycle xw, yw_{i+1}, x, a contradiction. If both $xw, xw_{i+1} \in E(T)$, then $yw, yw_{i+1} \notin E(T)$, which in turn gives $d_T(y) \leq 2$, a contradiction. So, either $\{xw, yw_{i+1}\} \subseteq E(T)$ or $\{xw_{i+1}, yw\} \subseteq E(T)$. □

The following is an immediate consequence of Claim 3.4.

Claim 3.5 For each $i = 1, 2, 3$, among any three consecutive vertices along path Q_i, at least one of them is on C.

We consider two cases to finish the proof.

Case 1. Suppose $\{v_1, v_2\} \cap V(C) = \emptyset$, i.e., $d_T(v_i) \geq 3$ for $i = 1, 2$.
For each $1 \leq i \leq 3$, since $|C \cap X_i| \geq 2$, $C \cap X_i = \{w, w_{i+1}\}$. Consequently, $w_i \in V(C)$ for each $i = 1, 2, 3$. By Claim 3.2, $C \cap Q_i \neq \emptyset$ for each $i = 1, 2, 3$. So $V(C) = \{w_1, w_2, w_3\} \cup (\bigcup_{i=1}^3 V(C \cap Q_i))$ separates v_1 and v_2, which contradicts the fact that $T - V(C)$ is connected.

Case 2. Suppose $\{v_1, v_2\} \cap V(C) \neq \emptyset$.
Assume without loss of generality that $v_1 \in V(C)$. By Claim 3.3 and symmetry, we may assume that both $w_1, w_2 \in V(C)$. Let $P_1 = v_1u_1u_2 \ldots u_{n_1-1}v_2$. So, v_1, w_1 and w_2 are in C. Since $N_G(u_1) = \{w_1, w_2, v_1, u_2\}$ and u_1 must be adjacent to a vertex in $T - V(C)$, we have $u_2 \notin V(C)$. Since Q_1 is a component of $G - \{v_1, w_1, v_2, w_2\}$ and $T - V(C)$ is connected, $u_2u_3 \ldots u_{n_1}v_2$ must be a subtree of $T - V(C)$. On the other hand, by Claim 3.5 and the fact that $n_1 \geq 5$, at least one of u_2, u_3 and u_4 must be in C, a contradiction.

We note that Case 2 is the only place in the proof where we use the assumption $n_i \geq 5$ for each $i = 1, 2, 3$. In the proof of Claim 3.2 we only require $n_i \geq 4$. □

References

