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ABSTRACT

In this paper, we prove the following theorem, which is motivated by two different contexts inde-
pendently, namely graph theory and combinatorial optimization.

Given a circuit graph (which is obtained from a 3-connected planar graph by deleting one
vertex) with n vertices, there is a spanning closed walk W of length at most 4(n − 1)/3
such that each edge is used by W at most twice.

Our proof is constructive (and purely combinatorial) in the sense that there is an O(n2)-time
algorithm to construct such a walk in a given 3-connected planar graph. We shall construct an
example that shows that the upper bound 4(n − 1)/3 is essentially tight. We also point out that
2-connected planar graphs may not have such a walk, as K2,n−2 shows.
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1 Introduction

Finding a Hamiltonian cycle is arguably one of the most popular subjects in graph theory. There are
several sufficient conditions for a graph to have a Hamiltonian cycle. Note that some of the sufficient
conditions are mentioned in [8]. Finding a Hamiltonian cycle is also one of the central problems in
combinatorial optimization, since it is directly connected to the Traveling Salesman Problem.

A study on Hamiltonian cycles was started with the connection to the Four Color Problem (now
Theorem). It had been conjectured since 1880’s that every 3-connected cubic planar graph is Hamil-
tonian, and if true, it would imply the Four Color Problem. However, Tutte [27] in 1946 constructed
a counterexample, and in [28], he proved that every 4-connected planar graph is Hamiltonian. As we
see here, a study on Hamiltonian cycles for planar graphs is historically one of the central topics in
graph theory. In the last decade, a Hamiltonian cycle in planar graphs has also been studied in graph
algorithm ([17], for example), because of its connection to the Traveling Salesmen Problem.
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In this paper, we consider the following problem, which is motivated by two different contexts
independently, namely graph theory and combinatorial optimization. A spanning closed walk of a
graph is a walk that visits all vertices of the graph and turns back to the starting vertex. Sometimes
a spanning closed walk is called a Hamiltonian walk. The length of a spanning closed walk is the total
number of transits of edges. Note that a spanning closed walk can use an edge many times, and we
count such an edge twice or more for the length. A Hamiltonian cycle of a graph G is equivalent to a
spanning closed walk of length exactly |G|.

In a 3-connected planar graph G with n vertices, is there a spanning closed walk W of
length at most 4n/3?

Indeed, we shall show that the answer of this problem is true, and in Section 5, we also show that
the bound 4n/3 is essentially tight. We now clarify why this problem is considered independently both
in graph theory and combinatorial optimization.

1.1 Hamiltonian cycles and spanning closed walks in 3-connected planar graphs

In 1956, Tutte [28] proved that every 4-connected planar graph is Hamiltonian. of Tutte. For a short
proof, see Thomassen [26]. Thomas and Yu [25] extended Tutte’s theorem to the projective planar case.
This result cannot be extended to 3-connected planar graphs since there exist planar triangulations G
on n vertices such that any longest cycle in G is of length O(nα), where α = log 2/ log 3 ≈ 0.63; see [20].
However, there are many results showing that every 3-connected planar graph has several properties
close to Hamiltonicity. Here, a k-tree is a tree with maximum degree at most k, and a closed k-walk
is a closed walk that visits every vertex at most k times. Note that a spanning 2-tree is exactly a
Hamiltonian path, while a spanning closed 1-walk is exactly a Hamiltonian cycle. Barnette [4] proved
that every 3-connected planar graph has a spanning 3-tree. Gao and Richter [10] strengthened it by
showing that every 3-connected planar graph has a spanning closed 2-walk. (It was shown that if a
graph has a spanning closed 2-walk, then it also has a spanning 3-tree, see [15].) Extending the result
by Barnette [4] to another direction, Nakamoto, Oda and Ota [21] proved that every 3-connected
planar graph with n vertices has a spanning 3-tree in which the number of vertices of degree 3 is at
most max{n−7

3 , 0}. Since a vertex visited twice in a closed 2-walk W corresponds to a vertex of degree
3 in the 3-tree corresponding to W , it is natural to think the following problem.

Problem 1 (Nakamoto, Oda and Ota, [21]) Does every 3-connected planar graph with n vertices
have a spanning closed 2-walk in which the number of vertices visited twice is at most max{n+c

3 , 0} for
some constant c?

Problem 1 is still open. It is easily shown that if a graph with n vertices has a spanning closed
2-walk W of length at most 4n/3, then the number of vertices visited twice in W is at most n/3.
Thus, as a step to attack Problem 1, we are interested in a spanning closed walk of short length in a
3-connected planar graph. This is our first motivation.

Furthermore, as we have seen, every 3-connected planar graph has nice properties close to Hamil-
tonicity. Let us observe that Tutte’s theorem says that every 4-connected planar graph with n vertices
has a spanning closed walk of length exactly n. So what happens if we only consider a 3-connected
planar graph, and how many transits of edges are needed to cover all of the vertices by a spanning
closed walk? This is also a motivation from graph theory.

1.2 TSP and Combinatorial Optimization

In combinatorial optimization, the well-known Traveling Salesman Problem (TSP) in metric graphs
is one of the most fundamental NP-hard optimization problems. The TSP is the following; Given a
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complete undirected graph G with n vertices with non-negative edge costs, find a Hamiltonian cycle
in G of minimum cost. When the costs satisfy the triangle inequality, we call the problem metric.
A special case of the metric TSP is the so-called graph-TSP, where, given an undirected unweighted
simple underlying graph G, the complete graph on V (G) is formed by defining the cost between two
vertices as the number of edges on the shortest path between them. The weighted complete graph
obtained from G is known as the metric completion of G.

In spite of a vast amount of research, several important questions remain open. While the problem
is known to be APX-hard and NP-hard to approximate with a ratio better than 220/219 [23], untill
2011, the best upper bound was still the 1.5-approximation algorithm obtained by Christofides [5]
more than three decades ago. (Recently, the better bound was shown in [12, 18].) A promising
direction to improve this approximation guarantee has long been to understand the power of a linear
program, which is known as the Held-Karp relaxation [14]. So we have to study the integrality gap
α(TSP ), which is the worst-case ratio between the optimal solution to the TSP problem and the
optimal solution to its linear programming relaxation (the Held-Karp relaxation). The value α(TSP )
gives one measure of the quality of the lower bound provided by the Held-Karp relaxation for the
TSP. Moreover, a polynomial-time constructive proof for value α(TSP ) would provide an α(TSP )-
approximation algorithm for the TSP. On the other hand, the best lower bound on α(TSP ) is 4/3
and indeed the famous 4/3-conjecture states that this lower bound would be tight.

Conjecture 1 (Goemans, [13]) α(TSP ) is at most 4/3.

The ratio 4/3 is reached asymptotically by taking two disjoint triangles T1 and T2 and three
pairwise disjoint paths of length n/3 joining V (T1) and V (T2). Each edge in T1 ∪ T2 gets the weight
1/2, and other edges have weight 1. Then each vertex receives total weight 2. Therefore, this graph
together with the assigned weight satisfies the Held-Karp relaxation. It is clear that this graph is
planar. Therefore, Goemans3 brought attention to Conjecture 1 and especially conjectured that for
every plane triangulation with n vertices, we can find a solution to the Held-Karp relaxation whose
value is at most 4n/3, and therefore the 4/3-conjecture is always true for plane triangulations. This
is our second motivation.

1.3 Our main results

In this paper, we answer the above problems (which are motivated independently by both graph theory
and combinatorial optimization) in the affirmative. Namely;

Theorem 2 Let G be a 3-connected planar graph with n vertices. Then G has a spanning closed walk
of length at most 4n−4

3 . Moreover, given a 3-connected planar graph G, such a walk can be found in
O(n2)-time.

In Section 5, we give an example that shows that the bound 4n−4
3 is essentially tight. Theorem

2 extends an old result by Asano, Nishizeki and Watanabe [2, 3] who proved that if G is a planar
triangulation with n vertices, then G has a spanning closed walk of length at most 3n

2 . (Also they [22]
gave an algorithm to find such a walk.) In fact, they conjectured that a planar triangulation has a
a spanning closed walk of length at most 4n

3 . Theorem 2 gives an even stronger statement. We also
point out that 2-connected planar graphs may not have such a walk, for example, consider K2,n−2.

Let us point out that although our algorithm in Theorem 2 implies an O(n2)-time algorithm to
give a 4/3-approximation algorithm for the TSP for 3-connected planar graphs, Klein [17] gave a much
better result. He gave a linear time approximation scheme ((1 + ϵ)-approximation for any ϵ > 0) for

3See “17. Maximal Planar Graphs” in http://www.math.mcgill.ca/˜bshepherd/Bellairs/bellairs2007.pdf
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the TSP for planar graphs. Klein’s result was extended to bounded genus graphs [7] and recently to
H-minor-free graphs [6]. In view of these extensions, we conjecture that Theorem 2 can be extended
to the bounded genus graphs and probably to the H-minor-free graphs.

Leaving the plane to consider closed surfaces of higher genera, there are some technical difficul-
ties. For example, the chromatic number of graphs on non-spherical closed surfaces can dramatically
increase. However, for graphs which obey certain local planarity conditions, one can deduce similar
properties as for planar ones. Quantitatively, we introduce the representativity of a graph G on a
non-spherical closed surface F2 as the length of a shortest curve that is noncontractible in F2, where
a noncontractible curve on F2 is a curve that does not bound a disk on F2. For a partial result in this
direction on graphs on closed surfaces of bounded genus, we prove Theorem 3 concerning graphs with
high representativity. Since this is not a main target of this paper, we put the proof of Theorem 3 in
Appendix.

Theorem 3 For every closed surface F2 of Euler characteristic χ with χ ≤ 1, there exists an integer r
such that every 3-connected graph with n vertices on F2 with representativity at least r has a spanning
closed walk of length at most 4n+2−6χ

3 .

In Section 5, we shall show that this result is also essentially tight.
Technically, we shall prove Theorem 2 by adapting the notion a circuit graph. In order to state

our technical result which implies Theorem 2, we need some definitions that will be given in the next
section.

1.4 Technical statement

For notation not defined in this paper, we refer to the book [8]. For a graph G, we write 2G for the
multigraph obtained from G by replacing each edge of G with two multiple edges. A graph R is called
even if each vertex of R has an even degree. It is easy to see the following:

(1) A graph G has a spanning closed walk of length at most t if and only if G has a spanning closed
walk W ′ of length at most t such that each edge of G is used by W ′ at most twice.

(2) A graph G has a spanning closed walk W ′ such that each edge of G is used by W ′ at most twice
and W ′ has the length at most t if and only if 2G has a spanning connected even subgraph R
with |E(R)| ≤ t.

These imply the following proposition.

Proposition 4 A graph G has a spanning closed walk of length at most t if and only if the multigraph
2G has a spanning connected even subgraph R with |E(R)| ≤ t.

Theorem 2 concerns 3-connected planar graphs. However, for our purpose to show Theorem 2,
it turns out that 3-connectivity is too strong. We have to relax it in order to apply our induction
hypothesis, see Theorem 5. Therefore, we need to define “circuit graphs”.

For a 2-connected plane graph G, the outer cycle of G is the cycle bounding the infinite face. For
the outer cycle C of a 2-connected plane graph G, a pair (G,C) is called a circuit graph if for every
vertex x in G − V (C), there exist three paths in G such that they connect x and C and they are
pairwise disjoint except for x. (A circuit graph is sometimes called an internally 3-connected plane
graph or an I3CP graph.) In other words, there exists no vertex set that consists of at most two
vertices and separates some vertices in G−V (C) from C. Note that for every 3-connected plane graph
G, the pair (G,C) is a circuit graph, where C is the outer cycle of G. For u, v ∈ V (C), we denote,
by C[u, v], the subpath of C starting from u and ending at v in the clockwise order. A vertex v in
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a graph G is a 2-vertex if the degree of v is exactly two in G. Note that every 2-vertex of a circuit
graph (G,C) is contained in C. For a positive integer i, we denote the complete graph with i vertices
by Ki. Note that (K3, C) is a circuit graph, where C is the unique cycle of K3. For two graphs G and
H, we write G ∼= H if G is isomorphic to H; otherwise G ̸∼= H.

By Proposition 4, the following theorem implies Theorem 2. So in Section 3, we show Theorem 5
instead of Theorem 2.

Theorem 5 Let (G,C) be a circuit graph with G ̸∼= K3. Then 2G has a spanning connected even
subgraph R such that

(R1) |E(R)| ≤ 4|V (G)|−4
3 ,

(R2) every 2-vertex of G has degree two in R, and

(R3) for every edge e connecting two 2-vertices in G, the subgraph R contains exactly one of the two
edges e1 and e2 of 2G, where both e1 and e2 correspond to e in G.

In Section 5, we show that the bound 4|V (G)|−4
3 is best possible.

We can easily show the following.

Proposition 6 Let G ∼= K3. Then 2G has a spanning connected even subgraph R such that |E(R)| =
3 = 4|V (G)|−3

3 , and R satisfies conditions (R2) and (R3).

Note that Theorem 5 and Proposition 6 state that for every circuit graph (G,C), the multigraph

2G has a spanning connected even subgraph R such that (R1’) |E(R)| ≤ 4|V (G)|−3
3 and R satisfies

conditions (R2) and (R3).
In the next section, we shall give more fundamental lemmas concerning circuit graphs.

2 Some preliminary lemmas for circuit graphs

As we pointed out before, our main task is to give a proof of Theorem 5. Thus we need to give several
nice properties on circuit graphs. Roughly, circuit graphs have some nice recursive structure, which
allows us to apply induction.

2.1 Lemmas concerning a circuit graph

For a circuit graph, it is easy to see the following. See, for example, [10].

Lemma 7 Let (G,C) be a circuit graph and let C ′ be a cycle in G. Let G′ be the graph induced by C ′

together with its interior edges. Then (G′, C ′) is a circuit graph.

Lemma 8 Let (G,C) be a circuit graph, and let u, v be two vertices of C such that G− {u, v} is not
connected. Let D be a component of G − {u, v} and D = G − {u, v} −D. (Note that both D and D
contains a vertex of C, by the definition of a circuit graph.) Let G′ be the plane graph obtained from
G by deleting D and adding a path P from u to v so that the outer cycle C ′ of G′ contains P and
E(C) ∩ E(G−D). Then (G′, C ′) is also a circuit graph.

A circuit graph (G,C) is edge-minimal if for every edge e of G, the pair (G′, C ′) is not a circuit
graph, where G′ = G− e and C ′ is the outer cycle of G′. It follows from Lemma 7 that for an edge e
in C, the pair (G′, C ′) is not a circuit graph if and only if G′ is not 2-connected.
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A block in a graph H (possibly H might not be connected, or H is 2-connected) is a maximal
subgraph of H that has no cut vertex. Note that every block of any graph is 2-connected or isomorphic
to K2. A block B is an end block of a graph H if B contains at most one cut vertex of H.

A chain of blocks in a graph H is a sequence B0B1 · · ·Bm such that each Bi is a block of H,
Bi ∩Bj = ∅ for 0 ≤ i < j ≤ m with j ̸= i+1, and |V (Bi ∩Bi+1)| = 1 for 0 ≤ i ≤ m− 1. So the reader
can think of this chain of blocks as a block decomposition such that the abstract tree is a path. (For
the definition of a block decomposition and the abstract tree, see, for example, [29].) For a block B
of a graph H, let IH(B) be the set of vertices x in B such that x is not a cut vertex in H.

The following lemma is also obvious. (See [21].)

Lemma 9 Let (G,C) be an edge-minimal circuit graph, and let e be an edge in C. Then the following
holds;

(i) The graph G′ is a chain of blocks B0B1 · · ·Bm with m ≥ 1, where G′ = G− e.

(ii) One end vertex of e, say x0, is contained in IG′(B0), and the other, say xm+1, is contained in
IG′(Bm).

(iii) Let G0 be the graph obtained from G by contracting IG′(Bm) into one vertex, and let C0 be the
outer cycle of G0. Then (G0, C0) is also a circuit graph. Moreover, if dG(x0) ≥ 3, then G0 ̸∼= K3.

For a circuit graph (G,C), the following lemma guarantees the existence of the end block of
G− V (C) with an “end” property. This can be easily shown by the planarity, so we omit the proof.

Lemma 10 Let (G,C) be a circuit graph with V (G) − V (C) ̸= ∅. Let H = G − V (C). Then there
exist an end block B0 of H and two neighbors u0 and v0 of IH(B0) in C such that

(i) C[u0, v0] contains all neighbors of IH(B0) in C, and

(ii) C[u0, v0]− {u0, v0} contains no neighbors of H − IH(B0) in C.

2.2 An extended chain of blocks

In this subsection, we shall define an extended chain of blocks and its maximality, both of which plays
a key role in our proof of Theorem 5. This concept is somewhat technical, but roughly speaking, we
want to contract a certain part of a circuit graph (G,C) and apply the induction hypothesis. It turns
out that some special property of blocks in G−V (C) (which is exactly “an extended chain of blocks”)
is suitable for this purpose.

Let (G,C) be a circuit graph, and let H = G − V (C). Let B0, u0, and v0 be an end block of H
and two neighbors of IH(B0) in C as in Lemma 10, respectively.

An extended chain of blocks in H for C from B0 is either (i) a chain B0B1 · · ·Bm of blocks or (ii)
two chains B0B1 · · ·Bk and Bk+1 · · ·Bm of blocks of H such that they satisfy the following conditions
(B1)–(B7). See the left side of Figure 13 for (i), and the right side for (ii). Note that the outer ellipse
represents the outer cycle C. Let {xi+1} = V (Bi ∩Bi+1) for 0 ≤ i ≤ m− 1 with i ̸= k if (ii) occurs.

(B1) If (ii) occurs, then both Bk and Bk+1 are end blocks of H, and Bk ∩B = ∅ for each block B of
H with B ̸= Bk, Bk−1.

(B2) For 0 ≤ i ≤ m − 1, the cut vertex xi+1 is contained in exactly two blocks Bi and Bi+1 of H,
unless (ii) occurs and i = k.

(B3) For 0 ≤ i ≤ m, the block Bi contains at most two cut vertices of H.
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B0B1Bm−1Bm+1

u0

v0

Bm B0Bk−1BkBm

u0

v0

Bk+1

(i) (ii)

Figure 1: An extended chain of blocks of H for C from B0.

(B4) For 0 ≤ i ≤ m, at least one of u0 and v0 has a neighbor in Bi − xi.

(B5) If (ii) occurs, then both u0 and v0 has a neighbor in IH(Bk+1).

(B6) If there exists a block Bm+1 such that Bm+1 ̸= Bm−1 and |V (Bm∩Bm+1)| = 1, then Bm−xm+1

has no neighbors in C[v0, u0]− {u0, v0}, where {xm+1} = V (Bm ∩Bm+1).

(B7) If (ii) occurs and k = m − 1, then Bm itself is a component of H, or IH(Bm) has no neighbors
in C[v0, u0]− {u0, v0}.

Note that the sequence consisting of only B0 satisfies conditions (B1)–(B7). Notice also that by
conditions (B1)–(B3), an extended chain of blocks in H for C from B0 consists of at most two chains of
blocks whose abstract trees are paths in H. Moreover, if (ii) occurs, then the chain of blocks containing
B0 is a component in H.

An extended chain B0B1 · · ·Bm of blocks inH for C from B0 is calledmaximal if B0B1 · · ·BmBm+1

is not an extended chain of blocks in H for every block Bm+1 of H.
This maximal extended chain plays a key role in our proof, because what we are trying to do is

to contract the subgraphs in the maximal extended chain, together with some vertices on the outer
cycle. Let us observe that each block in the maximal extended chain is a circuit graph and therefore,
we can use the induction hypothesis to each block. We want to show that the resulting graph after
the contraction satisfies the assumptions of Theorem 5. This is not quite true, but Lemma 11 (see
the end of this section) tells us that this is almost true. Assuming Lemma 11, we will try to glue a
spanning closed walk in the extended maximal chain and a spanning closed walk in the resulting graph
together, and then obtain a spanning closed walk of length at most 4(n− 1)/3 in the original graph.
As we see here, Lemma 11 below is a key, but in order to mention this lemma, we need to analyze the
structure of a maximal extended chain more carefully.

Let B0B1 · · ·Bm be a maximal extended chain of blocks in H for C from B0. By the maximality
of m, we can divide the properties of the sequence B0B1 · · ·Bm into the following types.

Type 1. There exists a block Bm+1 such that Bm+1 ̸= Bm−1 and |V (Bm ∩Bm+1)| = 1.
This condition implies that the sequence B0 · · ·BmBm+1 satisfies conditions (B1), (B5) and (B7).

Let {xm+1} = V (Bm ∩Bm+1). By the maximality of m, we can also divide Type 1 into the following
four types. Note that the sequence B0 · · ·Bm+1 of Types 1.1, 1.2, 1.3 and 1.4 does not satisfy conditions
(B2), (B3), (B4) and (B6), respectively.

Type 1.1. The vertex xm+1 is contained in at least three blocks of H.
Type 1.2. The block Bm+1 contains at least three cut vertices of H.
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B0B1Bm−1

u0

v0

Bm

xm+1

Figure 2: Type 1.1

B0B1Bm−1Bm+1

u0

v0

Bm

Figure 3: Type 1.2

B0B1Bm−1Bm+1

u0

v0

Bm

Figure 4: Type 1.3

B0B1Bm−1Bm+1

u0

v0

BmBm+2

Figure 5: Type 1.4

Type 1.3. Neither u0 nor v0 is a neighbor of Bm+1 − xm+1.
Type 1.4. There exists a block Bm+2 such that Bm+2 ̸= Bm, |V (Bm+1∩Bm+2)| = 1, and Bm+1−xm+2

has a neighbor in C[v0, u0]− {u0, v0}, where {xm+2} = V (Bm+1 ∩Bm+2).

Type 2. There exists no block B such that B ̸= Bm−1 and |V (B ∩Bm)| = 1.
This condition implies that Bm is an end block of H. So, for all end blocks B of H with B ̸= Bi

for 0 ≤ i ≤ m, the sequence B0 · · ·BmB satisfies conditions (B1) and (B2). If there exists a block
Bm+1 of H −

∪m
i=0Bi such that Bm+1 itself is a component of H and both u0 and v0 is a neighbor

of Bm+1, then B0 · · ·BmBm+1 also satisfies conditions (B3)–(B7), contradicting the maximality of m.
Thus, Type 2 can be also divided into the following types.

Type 2.1. There exists a component D′ of H −
∪m

i=0Bi such that D′ has at least two blocks and
both u0 and v0 is a neighbor of D′.
Type 2.2. There exists no component D′ of H −

∪m
i=0Bi such that both u0 and v0 is a neighbor of

D′.

We have the following lemma, which states that the contraction of a maximal extended chain of
blocks keeps the property “being a circuit graph”, with a few exceptions. (See Figure 6. In Figure 6,
the chain of blocks B0B1 . . . Bm together with four blocks inside of C represents D.) This plays an
important role in the proof of Theorem 5.

Lemma 11 Let (G,C) be a circuit graph, and let H = G− V (C). Let B0, u0 and v0 be an end block
of H and two neighbors of IH(B0) in C as in Lemma 10, respectively. Let B0B1 . . . Bm be a maximal
extended chain of blocks of H for C from B0. Let G0 be the graph obtained from G by contracting∪m−1

i=0 Bi ∪ IH(Bm) ∪ C[u0, v0] into one vertex. Let C0 be the outer cycle of G0. If |V (G0)| ≥ 3, then
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B0B1Bm−1Bm+1

u0

v0

Bmz

Figure 6: An exception to Lemma 11.

(G0, C0) is a circuit graph, unless there exists a subgraph D of H such that D satisfies the following
properties;

(D1) The subgraph D consists of some components of H.

(D2) For 0 ≤ i ≤ m, the block Bi is contained in D.

(D3) The subgraph D has exactly one neighbor in C[v0, u0]− {u0, v0}, say z.

(D4) The subgraph D′ is a chain of blocks with at least two end blocks, where D′ = D −
∪m−1

i=0 Bi −
IH(Bm), and z is a neighbor of both end blocks.

(D5) The pair (G′
0, C0) is a circuit graph with G′

0 ̸∼= K3, where G′
0 = G0 −D′.

We will prove Lemma 11 in Section 4.

3 Proof of Theorem 5

Assume that Theorem 5 does not hold and let (G,C) be a minimum counter example, that is, 2G
has no spanning connected even subgraph with desired conditions, but 2G′ has for every circuit graph
(G′, C ′) with |V (G′)| < |V (G)|, or |V (G′)| = |V (G)| and |E(G′)| < |E(G)|.

Suppose that (G,C) is not an edge-minimal circuit graph, that is, there exists an edge e in G
such that (G′, C ′) is also a circuit graph, where G′ = G− e and C ′ is the outer cycle of G′. Then by
the minimality of (G,C), the multigraph 2G′ has a spanning connected even subgraph with desired
conditions. However it is also a spanning connected even subgraph with desired conditions in 2G, a
contradiction. Hence the following holds:

Fact 1 The circut graph (G,C) is edge-minimal.

Now we show the following claim.

Claim 2 Every edge in C is incident with a 2-vertex of G.

Proof of Claim 2. Suppose not, and let e be an edge of C which is incident with no 2-vertex. Let
G′ = G− e. By Lemma 9 (i)–(ii), the graph G′ is a chain of blocks B0B1 · · ·Bm with m ≥ 1 such that
one end vertex of e, say x0, is contained in IG′(B0), and the other, say xm+1, is contained in IG′(Bm).
By the choice of e, we have dG(x0) ≥ 3 and dG(xm+1) ≥ 3. If m = 1 and |B0| = |Bm| = 3, then we can
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B0 Bm

x0 xm+1

G

B0

x0

xm

G1

y

Bm−1

x0

xm

R1

y

Case 1.

Bm

G2 and R2

xm+1

xm

x0

xm

R1

y

Case 2.

Bm

G2 and R2

xm+1

xm

P

e

Figure 7: The graphs G1, G2, R1 and R2 in the proof of Claim 2.

easily find a spanning connected even subgraph with desired conditions in 2G. Hence by symmetry,
we may assume that m ≥ 2 or |B0| ≥ 4.

Let G1 be the graph obtained from G by contracting IG′(Bm) into one vertex, say y, and let C1

be the outer cycle of G1. See the left side of Figure 7. Note that y is a 2-vertex in G1.
Since dG(xm+1) ≥ 3, we have |Bm| ≥ 3, and hence |V (G1)| = |V (G)| − |IG′(Bm)| + 1 < |V (G)|.

By Lemma 9 (iii), the pair (G1, C1) is also a circuit graph with G1 ̸∼= K3. Then it follows from
the minimality of (G,C) that 2G1 has a spanning connected even subgraph R1 satisfying conditions

(R1)–(R3). Let R̃1 = R1 − y. Note that possibly except for x0 and xm, each vertex of R̃1 has an even
degree, where {xm} = V (Bm−1 ∩Bm). Since y is a 2-vertex in G1, it follows from condition (R2) that
dR1(y) = 2. Hence by condition (R1), we have

|E(R̃1)| ≤
4|V (G1)| − 4

3
− 2. (1)

We divide the proof into 2 cases depending on parities of the degrees of x0 and xm: the case where
both x0 and xm have even degrees in R̃1 (Case 1), and the case where both have odd degrees (Case
2). Before considering two cases separately, we show a common property in both cases. In Case 1,

note that the two edges of R1 incident with y come from one edge of G. In this case, clearly R̃1 is
connected. On the other hand, in Case 2, the two edges of R1 that are incident with y come from two
distinct edges of G. In this case, if R̃1 is not connected, then each component of R̃1 contains exactly
one of x0 and xm, and hence it does not satisfy the handshake lemma, a contradiction. Therefore, in
either case, R̃1 is connected.

Case 1. Both x0 and xm have even degrees in R̃1.
In this case, see the middle of Figure 7. Let G2 = Bm and let C2 be the outer cycle of G2.

By Lemma 7 (and since |Bm| ≥ 3), the pair (G2, C2) is also a circuit graph. By the minimality of
(G,C) or by Proposition 6, the multigraph 2G2 has a spanning connected even subgraph R2 satisfying
conditions (R1’), (R2) and (R3).

Let R = R̃1 ∪ R2. Since each vertex of R̃1 and R2 has an even degree and both R̃1 and R2 are
connected, the graph R is a spanning connected even subgraph of 2G. Since both R̃1 and R2 satisfy
conditions (R2) and (R3), the subgraph R of 2G also satisfies conditions (R2) and (R3), (Note that
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each 2-vertex of G is also a 2-vertex in one of the graphs G1 and G2) Notice also that

|V (G2)| = |Bm| = |V (G)| − |V (G1)|+ 2.

Then by inequality (1) and condition (R1’) for R2, we have

|E(R)| = |E(R̃1)|+ |E(R2)|

≤ 4|V (G1)| − 4

3
− 2 +

4|V (G2)| − 3

3

<
4
(
|V (G1)|+ |V (G2)| − 2

)
− 4

3

=
4|V (G)| − 4

3
.

Hence R also satisfies condition (R1), contradicting the assumption that (G,C) is a minimum counter
example. □

Case 2. Both x0 and xm have odd degrees in R̃1.
In this case, see the middle of Figure 7. Note that R1 contains an edge connecting x0 and y and

an edge connecting y and xm.
Let G2 be the graph obtained from Bm by adding the path P of length three from xm to xm+1

(with two new vertices) so that the outer cycle C2 of G2 contains P and E(C)∩E(Bm). Since m ≥ 2
or |B0| ≥ 4, we have |V (G1)| ≥ 5. Hence

|V (G2)| = |Bm|+ 2 = |V (G)| − |V (G1)|+ 4 < |V (G)|.

Note that G2 ̸∼= K3. By Lemma 8 for D = Bm − {xm, xm+1}, the pair (G2, C2) is also a circuit
graph. It follows from the minimality of (G,C) that 2G2 has a spanning connected even subgraph

R2 satisfying conditions (R1)–(R3). Let R̃2 be the graph obtained from R2 by removing two internal

vertices of P . By conditions (R1) and (R2), we have |E(R̃2)| ≤ 4|V (G2)|−4
3 − 3. By condition (R3),

both xm and xm+1 have odd degree in R̃2, but all other vertices have even degree.

Let R = R̃1 ∪ R̃2 ∪ {x0xm+1}. By the construction, the graph R is a spanning connected even
subgraph of 2G such that R satisfies conditions (R2) and (R3). Moreover, by inequality (1) and
condition (R1) for R2, we have

|E(R)| = |E(R̃1)|+ |E(R̃2)|+ 1

≤ 4|V (G1)| − 4

3
− 2 +

4|V (G2)| − 4

3
− 3 + 1

=
4
(
|V (G1)|+ |V (G2)| − 4

)
− 4

3

=
4|V (G)| − 4

3
,

and hence R also satisfies condition (R1), a contradiction again. This discussion completes the proof
of Claim 2. □

If G = C, then C itself is a spanning connected even subgraph of 2G such that C satisfies conditions
(R1)–(R3). Hence we may assume that V (G) − V (C) ̸= ∅. Then it follows from Claim 2 that
|V (C)| ≥ 6. Let H = G−V (C). Let B0, u0, and v0 be an end block of H and two neighbors of IH(B0)
in C as in Lemma 10, respectively. Let B0B1 . . . Bm be a maximal extended chain of blocks of H for
C from B0. Let G0 be the graph obtained from G by contracting

∪m−1
i=0 Bi ∪ IH(Bm) ∪ C[u0, v0] to

one vertex. See Figure 8. We next prove the following claim.
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B0B1Bm−1Bm+1

u0

v0

Bm

G

Bm+1

G0

y
xm+1

Figure 8: The graph G0 for an extended chain of Type 1.

Claim 3 |V (G0)| ≥ 4.

Proof. Assume that |V (G0)| ≤ 3. Note that |C[v0, u0]| ≤ 4. Hence by Claim 2, H has no neighbors
in C[v0, u0]− {u0, v0}.

Suppose first H ̸=
∪m

i=0Bi. Then there exists a vertex x in H−
∪m

i=0 V (Bi). It follows from Claim
2 that C[v0, u0]− {u0, v0} ̸= ∅, and hence we have |V (G0)− V (H)| ≥ 2. This inequality implies that
V (H) = {x} ∪

∪m
i=0Bi. Since x has no neighbors in C[v0, u0]−{u0, v0}, both u0 and v0 are neighbors

of x. However, letting Bm+1 be the block of H containing x, (which consists of only two vertices,) the
sequence B0 · · ·BmBm+1 is also an extended chain of blocks of H, contradicting the maximality of m.
Hence we have

H =

m∪
i=0

Bi.

Suppose next m = 0. If |B0| ≤ 3, then we can easily show that 2G has a spanning connected even
subgraph satisfying conditions (R1)–(R3). So we may assume that |B0| ≥ 4. Let G1 = B0 and C1 be
the outer cycle of G1. Then G1 is 2-connected, and hence by Lemma 7, the pair (G1, C1) is a circuit
graph with 4 ≤ |V (G1)| = |V (G)| − |V (C)|. By the minimality of (G,C), the multigraph 2G1 has a
spanning connected even subgraph R1 satisfying conditions (R1)–(R3). Let e and e′ be the edges in 2G
such that both of e and e′ correspond to an edge connecting B0 and C in G. Let R = R1 ∪C ∪{e, e′}.
Then R is a spanning connected even subgraph of 2G such that R satisfies conditions (R2) and (R3).
Moreover, since |V (G1)| = |V (G)| − |V (C)| and |V (C)| ≥ 6 (by Claim 2), we have

|E(R)| = |E(R1)|+ |E(C)|+ 2

≤ 4|V (G1)| − 4

3
+ |V (C)|+ 2

=
4
(
|V (G1)|+ |V (C)|

)
− 4

3
− |V (C)| − 6

3

≤ 4|V (G)| − 4

3
.

Then R also satisfies condition (R1).

Now we suppose m ≥ 1. This inequality implies that |V (H)| ≥ 3.
If H is not connected, then a component of H not containing B0 can have only two neighbors u0

and v0, contradicting that (G,C) is a circuit graph. This discussion implies that H is connected, and
hence |V (Bi ∩ Bi+1)| = 1 for 0 ≤ i ≤ m − 1. Since the pair (G,C) is a circuit graph and H has no
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neighbors in C[v0, u0]−{u0, v0}, the vertex u0 is a neighbor of IH(Bm). Let G2 be the subgraph of G
induced by V (H) ∪ {u0}. See Figure 9. By condition (B4) and the assumption that “H is connected
and m ≥ 1”, the graph G2 is 2-connected. Hence (G2, C2) is a circuit graph, where C2 is the outer
cycle of G2. Since m ≥ 1, we have |V (G2)| ≥ 4. It follows from the minimality of (G,C) that 2G2 has
a spanning connected even subgraph R2 satisfying conditions (R1)–(R3).

B0B1Bm

u0

v0

Bm−1

G

B0B1Bm

u0

Bm−1

G2

Figure 9: The graphs G2 and R2 in the proof of Claim 3.

Let R = R2 ∪ C. Then R is a spanning connected even subgraph of 2G such that R satisfies
conditions (R2) and (R3). Moreover, since |V (G2)| = |V (G)| − |V (C)|+ 1 and |V (C)| ≥ 6 (by Claim
2), we have

|E(R)| = |E(R2)|+ |E(C)|

≤ 4|V (G2)| − 4

3
+ |V (C)|

=
4
(
|V (G2)|+ |V (C)| − 1

)
− 4

3
− |V (C)| − 4

3

≤ 4|V (G)| − 4

3
.

This discussion completes the proof of Claim 3. □

Let y be the vertex of G0 obtained by contracting
∪m−1

i=0 Bi ∪ IH(Bm) ∪ C[u0, v0]. Now we prove
the following claim. Let C0 be the outer cycle of G0.

Claim 4 The multigraph 2G0 has a spanning connected even subgraph satisfying conditions (R1)–
(R3).

Proof. If (G0, C0) is a circuit graph, then it follows from Claim 3 and the minimality of (G,C) that
the statement is obvious. Then we may assume that (G0, C0) is not a circuit graph. By Lemma 11
and Claim 3, there exists a subgraph D of H such that D satisfies conditions (D1)–(D5). By condition
(D5), the pair (G′

0, C0) is a circuit graph, where G′
0 = G0−D′. Let G′′

0 be the subgraph of G0 induced
by V (D′)∪{z}, where z is the unique neighbor of D in C[v0, u0] with z ̸= u0 and z ̸= v0. By conditions
(D3) and (D4), the graph G′′

0 is 2-connected, and hence it follows from Lemma 7 that (G′′
0, C

′′
0 ) is a

circuit graph, where C ′′
0 is the outer cycle of G′′

0. Note that |V (G′
0)| < |V (G)|, |V (G′′

0)| < |V (G)|,
G′

0 ̸∼= K3, and G′′
0 ̸∼= K3. Then it follows from the minimality of (G,C) that both 2G′

0 and 2G′′
0 have

spanning connected even subgraphs R′
0 and R′′

0 satisfying conditions (R1)–(R3), respectively.
Let R0 = R′

0 ∪R′′
0 . Then R0 is a spanning connected even subgraph of 2G0 such that R0 satisfies
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conditions (R2) and (R3). Moreover, since |V (G0)| = |V (G′
0)|+ |V (G′′

0)| − 1, we obtain

|E(R0)| = |E(R′
0)|+ |E(R′′

0)|

≤ 4|V (G′
0)| − 4

3
+

4|V (G′′
0)| − 4

3

=
4
(
|V (G′

0)|+ |V (G′
0)| − 1

)
− 4

3

=
4|V (G0)| − 4

3
,

and hence R0 also satisfies condition (R1). This discussion completes the proof of Claim 4. □

By Claim 4, the multigraph 2G0 has a spanning connected even subgraph R0 satisfying conditions
(R1)–(R3). In the remaining parts of the proof, we deal with two types (Types 1 and 2) for B0 · · ·Bm

at that same time. To do that we first set some terminology.
Suppose first that the sequence B0 · · ·Bm is of Type 1. In this case, the vertex xm+1 exists, and

2G0 has the two edges, say e and e′, such that e and e′ connect xm+1 and y. Let R̃0 be the subgraph

of 2G such that R̃0 is induced by the all edges of R0 except for the edges e and e′ if R0 contains them.
Then each vertex has even degree in R̃0, possibly except for u0, v0 and xm+1.

Suppose next that the sequence B0 · · ·Bm is of Type 2. In this case, the vertex xm+1 does not

exist. Let R̃0 be the subgraph of 2G such that R̃0 is induced by the edges of R0. Then each vertex
has even degree in R̃0, possibly except for u0 and v0. If B0 · · ·Bm is of Type 2, then ignore the vertex
xm+1 and the edges e and e′.

Depending on parities of the degrees of xm+1, u0 and v0 in R̃0, we divide the proof into two cases.

R0

y
xm+1

u0

v0

R1

P

xm+1

Figure 10: The graphs R0 and R1 for Case 1.

Case 1. The sequence B0 · · ·Bm is of Type 1 and exactly one of e and e′ is contained in R0.
In this case, see the left side of Figure 10. Note that xm+1 and exactly one of u0 and v0 have

odd degrees in R̃0. By symmetry, we may assume that u0 has an odd degree in R̃0. It follows from
condition (R1) for R0 that

|E(R̃0)| ≤
4|V (G0)| − 4

3
− 1.

Let G1 be the graph obtained from the subgraph of G induced by
∪m

i=0 V (Bi)∪C[u0, v0] by adding
the path P of length three from xm+1 to u0 (with two new vertices) so that the outer cycle C1 of G1

contains P and C[u0, v0]. See the right side of Figure 10. Note that

|V (G1)| =
∣∣∣ m∪
i=0

V (Bi) ∪ C[u0, v0]
∣∣∣+ 2 = |V (G)| − |V (G0)|+ 4.
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Note that G1 ̸∼= K3. By Lemmas 7 and 8 and by condition (B6), the pair (G1, C1) is also a circuit
graph. It follows from the minimality of (G,C) that 2G1 has a spanning connected even subgraph

R1 satisfying conditions (R1)–(R3). Let R̃1 be the graph obtained from R1 by removing two internal
vertices of P . By conditions (R1) and (R3) for R1, note that

|E(R̃1)| ≤
4|V (G1)| − 4

3
− 3.

Let R = R̃0 ∪ R̃1. It follows from the construction that R is a spanning connected even subgraph
of 2G such that R satisfies conditions (R2) and (R3). Moreover, we have

|E(R)| = |E(R̃0)|+ |E(R̃1)|

≤ 4|V (G0)| − 4

3
− 1 +

4|V (G1)| − 4

3
− 3

=
4
(
|V (G0)|+ |V (G1)| − 4

)
− 4

3

=
4|V (G)| − 4

3
,

and hence R also satisfies condition (R1), a contradiction to the minimality of (G,C), again. □

Case 2. Otherwise.
We will deal with the remaining case at that same time, that is, the sequence B0 · · ·Bm is of Type

2, or of Type 1 and both e and e′ or neither e nor e′ is contained in R0. Note that in this case, even if
xm+1 exists (Type 1), then it has even degree in R̃0. We divide the rest of the proof into two subcases;

the one where both u0 and v0 have even degree in R̃0 (Case 2.1) and the one where both have odd

degree in R̃0 (Case 2.2). To do that, we first need the following settings.

Let

te =

{
2 if the sequence B0 · · ·Bm is of Type 1 and e, e′ ∈ E(R0),

0 otherwise.

Note that

|E(R̃0)| ≤
4|V (G0)| − 4

3
− te.

Define the integer k as follows:

k =

{
max{i : 0 ≤ i ≤ m− 1 and Bi is K2 or K3, or Bi ∩Bi+1 = ∅ } if such an integer i exists,

0 otherwise.

For 1 ≤ i ≤ m− k, let Gi = Bm−i+1 and let Ci be the outer cycle of Gi. Note that for 1 ≤ i ≤ m− k,
the graph Gi is isomorphic to neither K2 nor K3 by the choice of k, and hence by Lemma 7, the
pair (Gi, Ci) is a circuit graph with Gi ̸∼= K3. By the minimality of (G,C), for 1 ≤ i ≤ m − k, the
multigraph 2Gi has a spanning connected even subgraph Ri satisfying conditions (R1)–(R3).
Remark: Here we remark the reason why we need to define the integer k as above. First, even if we
try to treat the extended chain of block as a whole, then it is impossible, since the whole might not
be 2-connected. Hence at least we have to deal with each block (or some groups of them) separately.

Next, without defining the integer k, it follows from the minimality of (G,C) and Proposition 6
that for each block Bi with 1 ≤ i ≤ m, we can find a spanning connected even subgraph Ri in 2Bi, and
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obtain a spanning even subgraph R of 2G by combining them. However, the issues are connectedness
and condition (R1) for R. If the extended chain of blocks B0 · · ·Bm consists of two chains of blocks,
then just combining R0 and Ri for 1 ≤ i ≤ m cannot produce a connected subgraph. Hence in this
case, we have to distinguish them, and hence we need to find an integer i with Bi ∩ Bi+1 = ∅. The
second issue is condition (R1). Note that the upper bound on the number of edges in the spanning
connected even subgraph obtained by Proposition 6 is slightly more than the one obtained by the
minimality of (G,C). Hence by only combining Ri for 1 ≤ i ≤ m, we cannot show that R satisfies
condition (R1). To avoid such a situation, we define the integer k and use the minimality of (G,C) to
only the blocks that are isomorphic to neither K2 nor K3, that is, the blocks Bi with k + 1 ≥ i ≥ m.
The remaining blocks will be dealt separately.

Let B̂ =
∪k−1

i=0 Bi ∪ IH(Bk). In the remaining arguments, we will construct a spanning connected

even subgraph of 2G such that it satisfies conditions (R1)–(R3), combining R̃0 and Ri for 1 ≤ i ≤ m−k
together with the connected even subgraph Rm−k+1 obtained by the minimality of (G,C) to the certain

graph containing B̂. (In Case 2.2, we also combine C[u0, v0].) However, that is not enough and we
need extra edges f and f ′, because of the following reason. Suppose that te = 2. In this case, through
the process to obtain R̃0, the spanning connected even subgraph R0 might be separated into three
components; the one containing u0, the one containing v0, and the one containing xm+1. The first two

can be automatically connected through the process of combining R̃0 and Ri for 1 ≤ i ≤ m − k + 1,
but the last one cannot. Thus, in the last case, we need to take two edges f and f ′ in 2G such that f
and f ′ connect Bk+1 and Bk ∪ {u0, v0}, and add the edges f and f ′ instead of e and e′. Note that in

the case where te = 0, the subgraph R̃0 of 2G has only at most two components such that one of them
contains u0 and the other contains v0, and hence we do not need to add two such edges f and f ′.

By the choice of k, we have four possibilities on Bk;
(I) Bk ∩Bk+1 = ∅,
(II) Bk ∩Bk+1 ̸= ∅ and Bk is K2,
(III) Bk ∩Bk+1 ̸= ∅ and Bk is K3, and
(IV) Bk ∩Bk+1 ̸= ∅ and Bk = B0.

In Case (I), the sequence B0 · · ·Bm is of Type 2. Then IH(Bk) = V (Bk) − {xk}, and hence

B̂ =
∪k

i=0Bi. In this case, it follows from condition (B5) that both u0 and v0 has a neighbor in
I(Bk+1). Let f and f ′ be the edges of 2G such that both f and f ′ correspond to an edge connecting
I(Bk+1) and u0 in G.

In Case (II), Bk consists of only one edge, and let f and f ′ be the edges of 2G such that both f
and f ′ correspond to the unique edge in Bk.

In Case (III), Bk consists of only three vertices, which are xk, xk+1 and the other one, say x′k.
Since (G,C) is a circuit graph, x′k has to have a neighbor in C. Note that by condition (B4) and the
planarity, exactly one of u0 and v0 is a neighbor of x′k. Let f and f ′ be the edges of 2G such that both
f and f ′ correspond to the edge xk+1x

′
k of G.

In Case (IV), we have B̂ = IH(B0). By condition (B4), at least one of u0 and v0 has a neighbor in
B1 − x1. Let f and f ′ be the edges of 2G such that both f and f ′ correspond to an edge connecting
B1 − x1 and u0 or v0 in G.

We are now ready to show each of the two subcases.

Case 2.1. Both u0 and v0 have even degree in R̃0.
Let Gm−k+1 be the subgraph of G induced by B̂ ∪ C[u0, v0]. It follows from conditions (B4) and

(B5) that Gm−k+1 is 2-connected. Let Cm−k+1 be the outer cycle of Gm−k+1. By Lemma 7, note that
(Gm−k+1, Cm−k+1) is a circuit graph with Gm−k+1 ̸∼= K3. Then 2Gm−k+1 has a spanning connected
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R0

y
xm+1

u0

v0

R1, · · · , Rm−k+1R̃0

u0

v0

x′k

Bk+1 B0Bm

Bm Bk+1· · ·

· · ·

Figure 11: The graphs R̃0, R1, · · · , Rm−k+1 for Case 2.1 with case (III) and te = 2.

even subgraph Rm−k+1 satisfying conditions (R1)–(R3). See Figure 11.
Let

R =

{
R̃0 ∪

∪m−k+1
i=1 Ri ∪ {f, f ′} if te = 2,

R̃0 ∪
∪m−k+1

i=1 Ri otherwise.

Note that |E(R)| = |E(R̃0)| +
∑m−k+1

i=1 |E(Ri)| + te. Notice also that by the choice of k, we have
V (Ri ∩Ri+1) ̸= ∅ for 0 ≤ i ≤ m− k − 1. Moreover, if follows from the choice of f and f ′ that R is a
spanning connected even subgraph satisfying conditions (R2) and (R3).

Note that |V (G0) ∩ V (G1)| ≤ 1, and |V (Gi) ∩ V (Gi+1)| = 1 for 1 ≤ i ≤ m − k − 1. In addition,
since V (Gm−k) ∩ V (Gm−k+1) = ∅, we have

m−k+1∑
i=0

|V (Gi)| ≤ |V (G)|+m− k + 1.

Thus, we obtain

|E(R)| = |E(R̃0)|+
m−k+1∑
i=1

|E(Ri)|+ te

≤
m−k+1∑
i=0

4|V (Gi)| − 4

3

=
4
(∑m−k+1

i=0 |V (Gi)| − (m− k + 1)
)
− 4

3

≤ 4|V (G)| − 4

3
,

and hence R also satisfies condition (R1). □

Case 2.2. Both u0 and v0 have odd degree in R̃0.
Let

r =

{
k − 1 if k ≥ 1 and Bk is K2,

k otherwise.
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R0

y
xm+1

u0

v0

R1, · · · , Rm−k+1R̃0

u0

Bk+1 B0Bm

Bm Bk+1
· · ·

· · ·

Bk B0· · ·

Figure 12: The graphs R̃0, R1, · · · , Rm−k+1 for Case 2.2 with (I) and b).

Let let Gm−k+1 be the subgraph of G induced by
B0 a) if r = 0,

B̂ ∪ {u0} b) if r ̸= 0, B̂ is connected, and u0 has a neighbor in Bk − xk,

B̂ ∪ {v0} c) if r ̸= 0, B̂ is connected, and u0 does not have a neighbor in Bk − xk,

B̂ ∪ {u0, v0} d) otherwise.

See Figure 12. Note that it follows from conditions (B4) and (B5) that Gm−k+1 is 2-connected, unless
r = 0, and B0

∼= K2 or B0
∼= K1. Notice also that Gm−k+1

∼= Ki for i = 1, 2, 3 only when Case a)
occurs.

If Gm−k+1
∼= K1 or Gm−k+1

∼= K2, then 2Gm−k+1 has a spanning connected even subgraph Rm−k+1

with |E(Rm−k+1)| = 0 or |E(Rm−k+1)| = 2, respectively. If Gm−k+1
∼= K3, then it follows from

Proposition 6 that 2Gm−k+1 has a spanning connected even subgraph Rm−k+1 with |E(Rm−k+1)| = 3.
If Gm−k+1 is isomorphic to neither K1,K2 nor K3, then it follows from the minimality of (G,C) that
2Gm−k+1 has a spanning connected even subgraph Rm−k+1 satisfying conditions (R1)–(R3). In either
case, 2Gm−k+1 has a spanning connected even subgraph Rm−k+1 with

|E(Rm−k+1)| ≤

{
4|V (Gm−k+1)|−2

3 if Case a) occurs,
4|V (Gm−k+1)|−4

3 otherwise.

We first deal with Case a). Suppose first that B0 ∩ B1 = ∅. In this case, B0 has at least three
neighbors in C[u0, v0], and hence it follows from Claim 2 that |V (C[u0, v0])| ≥ 5. Let h and h′ be the
two edges of 2G such that both h and h′ correspond to an edge connecting u0 and B0.

Let

R =

{
R̃0 ∪

∪m−k+1
i=1 Ri ∪ C[u0, v0] ∪ {f, f ′, h, h′} if te = 2,

R̃0 ∪
∪m−k+1

i=1 Ri ∪ C[u0, v0] ∪ {h, h′} otherwise.

It follows from the construction that R is a spanning connected even subgraph of 2G such that R
satisfies conditions (R2) and (R3). Now we shall check that R also satisfies condition (R1). Note that

|V (G)| ≥ |V (G0)|+ |V (C[u0, v0])| − 1 +

m−k∑
i=1

(
|V (Gi)| − 1

)
+ |V (Gm−k+1)|

=

m−k+1∑
i=0

|V (Gi)|+ |V (C[u0, v0])| − (m− k + 1).
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Then we obtain

|E(R)| = |E(R̃0)|+
m−k+1∑
i=1

|E(Ri)|+ |E(C[u0, v0])|+ te + 2

≤
m−k∑
i=0

4|V (Gi)| − 4

3
+

4|V (Gm−k+1)| − 2

3
+ |V (C[u0, v0])| − 1 + 2

=
4
(∑m−k+1

i=0 |V (Gi)|+ |V (C[u0, v0])| − (m− k + 1)
)
− 4

3
− |V (C[u0, v0])| − 5

3

≤ 4|V (G)| − 4

3
,

and hence R also satisfies condition (R1).
Therefore, we may assume that B0 ∩ B1 ̸= ∅. In this case, without using two edges h and h′, the

subgraph Rm−k+1 is automatically connected to others. Instead of it, we only know that B0 has at
least two neighbors in C[u0, v0], and hence it follows from Claim 2 that |V (C[u0, v0])| ≥ 3.

Let

R =

{
R̃0 ∪

∪m−k+1
i=1 Ri ∪ C[u0, v0] ∪ {f, f ′} if te = 2,

R̃0 ∪
∪m−k+1

i=1 Ri ∪ C[u0, v0] otherwise.

It follows from the construction that R is a spanning connected even subgraph of 2G such that R
satisfies conditions (R2) and (R3). Note that

|V (G)| ≥ |V (G0)|+ |V (C[u0, v0])| − 1 +

m−k+1∑
i=1

(|V (Gi)| − 1)

=
m−k+1∑
i=0

|V (Gi)|+ |V (C[u0, v0])| − (m− k + 2).

Then we obtain

|E(R)| = |E(R̃0)|+
m−k+1∑
i=1

|E(Ri)|+ |E(C[u0, v0])|+ te

≤
m−k∑
i=0

4|V (Gi)| − 4

3
+

4|V (Gm−k+1)| − 2

3
+ |V (C[u0, v0])| − 1

=
4
(∑m−k+1

i=0 |V (Gi)|+ |V (C[u0, v0])| − (m− k + 2)
)
− 4

3
− |V (C[u0, v0])| − 3

3

≤ 4|V (G)| − 4

3
,

and hence R also satisfies condition (R1). This discussion completes Case a).

Now we consider the remaining three cases; Case b), c) and d). Let

R =

{
R̃0 ∪

∪m−k+1
i=1 Ri ∪ C[u0, v0] ∪ {f, f ′} if te = 2,

R̃0 ∪
∪m−k+1

i=1 Ri ∪ C[u0, v0] otherwise.
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By the construction, R is a spanning connected even subgraph of 2G such that R satisfies conditions
(R2) and (R3). (Notice that Rm−k+1 shares u0 and/or v0 with others.) Now we shall check that R
also satisfies condition (R1). Note that |V (C[u0, v0])| ≥ 3 by Claim 2.

Suppose first that Case b) or c) occurs. Then

|V (G)| ≥ |V (G0)|+ |V (C[u0, v0])| − 1 +

m−k+1∑
i=1

(|V (Gi)| − 1)

=

m−k+1∑
i=0

|V (Gi)|+ |V (C[u0, v0])| − (m− k + 2).

Thus, we obtain

|E(R)| = |E(R̃0)|+
m−k+1∑
i=1

|E(Ri)|+ |E(C[u0, v0])|+ te

≤
m−k∑
i=0

4|V (Gi)| − 4

3
+

4|V (Gm−k+1)| − 4

3
+ |V (C[u0, v0])| − 1

=
4
(∑m−k+1

i=0 |V (Gi)|+ |V (C[u0, v0])| − (m− k + 2)
)
− 4

3
− |V (C[u0, v0])| − 1

3

≤ 4|V (G)| − 4

3
,

and hence R also satisfies condition (R1).

Finally, suppose that Case d) occurs. In this case,

|V (G)| = |V (G0)|+ |V (C[u0, v0])| − 1 +
m−k∑
i=1

(|V (Gi)| − 1) + |V (Gm−k+1)| − 2

=

m−k+1∑
i=0

|V (Gi)|+ |V (C[u0, v0])| − (m− k + 3).

Note that B̂ is not connected, and hence B0 has at least three neighbors in C[u0, v0]. Hence it
follows from Claim 2 that |V (C[u0, v0])| ≥ 5. Thus, we obtain

|E(R)| = |E(R̃0)|+
m−k+1∑
i=1

|E(Ri)|+ |E(C[u0, v0])|+ te

≤
m−k+1∑
i=0

4|V (Gi)| − 4

3
+ |V (C[u0, v0])| − 1

=
4
(∑m−k+1

i=0 |V (Gi)|+ |V (C[u0, v0])| − (m− k + 3)
)
− 4

3
− |V (C[u0, v0])| − 5

3

≤ 4|V (G)| − 4

3
,

and hence R also satisfies condition (R1).
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This discussion completes the proof of Theorem 5. □

At the end of this section, we explain that we can find a spanning connected even subgraph R of
2G such that R satisfies condition (R1)–(R3) in O(n2)-time, where n is the number of vertices of a
graph G. In all part of the proof, we used the fact that (G,C) is a minimum counterexample, all of
which means, in the algorithmic side, that we consider a decomposition of a given graph into some
smaller (circuit) graphs that are pairwise edge-disjoint. First the total iteration number is O(m),
where m is the number of edges, since at each step, at least one edge (that is not an edge added
later) is deleted. In the process, we sometimes add some new edges, but at each step, we add constant
number of edges, and hence, in total, we deal with only O(m) new edges. The important point is that
all edges which were used in the spanning connected even subgraph in the smaller graph are surely
used in the obtained spanning connected even subgraph, and all other edges in the smaller graph are
never used in it. Since it takes O(m)-time to find a maximal extended chain of blocks, (this can be
done by the similar way to find a block decomposition) and there are O(m) iterations, our algorithm
takes O(m2)-time. Since the input graphs are planar, we have O(m2) = O(n2).

4 Proof of Lemma 11

Let y be the vertex of G0 obtained by contracting
∪m−1

i=0 V (Bi)∪ IH(Bm)∪C[u0, v0]. We consider two
cases depending on the types of B0 · · ·Bm.

Type 1.1, 1.2, 1.4 or 2.1.
Suppose first that B0, . . . Bm is of Type 1.1, 1.2, or 1.4. Let Bm+1 be the block of H as defined

in Section 2.2. Let D be the graph consisting of the components B of H such that B contains Bi for
some 0 ≤ i ≤ m+ 1. Let D′ = D −

∪m−1
i=0 Bi − IH(Bm).

When B0, . . . Bm is of Type 2.1, then let D′ be the component as defined in Section 2.2. Let D be
the graph consisting of D′ and the components of H containing Bi for some 0 ≤ i ≤ m.

In either cases, D is a subgraph of H such that D satisfies conditions (D1) and (D2). Note that
D′ is connected by conditions (B1)–(B3). We prove the following two claims.

Claim 5 The subgraph D′ has at least two end blocks.

Claim 6 For each end block B of D′, at least one of u0 and v0 is not a neighbor of IH(B), unless
B0, . . . Bm is of Type 1.4 and B = Bm+1, or B0, . . . Bm is of Type 2.1 and there exists an end block
Bm+1 of D′ such that both u0 and v0 has a neighbor in IH(Bm+1) and for each end block B of D′ with
B ̸= Bm+1, at least one of u0 and v0 is not a neighbor of IH(B).

Proof of Claims 5 and 6. We prove these claims considering three cases, depending on the types
of B0, . . . Bm.

Type 1.1 or 1.2.
For these two types, the abstract tree of D has a vertex of degree at least three such that it

corresponds to xm+1 (Type 1.1) or Bm+1 (Type 1.2). Therefore, D has at least three end blocks, and
hence D′ has at least two end blocks. Thus, Claim 5 holds. Claim 6 is obvious by the planarity of G,
Lemma 10 (ii) and condition (B5).

Type 1.4.
Recall that by the definition of Type 1.4, there exists a block Bm+2 with Bm+2 ̸= Bm such that

|V (Bm+1 ∩ Bm+2)| = 1 and Bm+1 − xm+2 has a neighbor in C[v0, u0] − {u0, v0}, where {xm+2} =
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V (Bm+2 ∩Bm+1). Then D′ contains the two blocks Bm+1 and Bm+2, and hence Claim 5 holds. Since
Bm+1 − xm+2 has a neighbor in C[v0, u0]− {u0, v0}, Claim 6 follows from the planarity of G.

Type 2.1.
In this type, Claim 5 trivially holds. So, we only show Claim 6. Suppose that there exist two end

blocks Bm+1 and B′
m+1 of D′ such that both u0 and v0 has a neighbor in IH(Bm+1) and in IH(B′

m+1).
Then by the planarity of G, at least one of the sequences B0 · · ·BmBm+1 and B0 · · ·BmB′

m+1 satisfies
conditions (B6) and (B7). However, since both sequence trivially satisfies conditions (B1)–(B5), we
have a contradiction to the maximality of m. This discussion implies that at least one of u0 and v0
is not a neighbor of IH(B) for each end block B of D′, or there exists an end block Bm+1 of D′ such
that both u0 and v0 has a neighbor in IH(Bm+1) and at least one of u0 and v0 is not a neighbor of
IH(B) for each end block B of D′ with B ̸= Bm+1.

This discussion completes the proofs of Claims 5 and 6. □

It follows from Claim 6 and the definition of a circuit graph that D′ has a neighbor that is neither
u0 nor v0, and it must be contained in C[v0, u0] by Lemma 10 (ii). Let u′ and v′ be the neighbors of
D′ in C[v0, u0]− {u0, v0} such that u′ and v′ are closest to v0 and to u0 in C[v0, u0], respectively. Let
F be the subgraph of G induced by D′ ∪ C[u′, v′]. We have the following claim.

Claim 7 The graph F is 2-connected.

Proof. Suppose not, that is, there exists a cut vertex in F .
Since there exists a cycle in F passing through C[u′, v′] and inside of D′, it is clear that there exists

an end block B of F such that B contains no vertex of C and has no neighbor in C[u′, v′]. Note that B
is also an end block of H (and B ̸= Bm+1 when B0, . . . Bm is of Types 1.4 and 2.1 and the exceptional
case occurs). Therefore, since (G,C) is a circuit graph, the block B has at least two neighbors in C.
By Claim 6, at least one of u0 and v0 is not a neighbor of B, and hence B has a neighbor w in C with
w ̸= u0, v0.

By the choice of u′ and v′, we have w ̸∈ V
(
C[v0, u

′]− {u′}
)
∪ V

(
C[v′, u0]− {v′}

)
. It follows from

Lemma 10 (ii) that w ̸∈ V (C[u0, v0]) − {u0, v0}. Hence w ∈ V (C[u′, v′]), but this contradicts that B
is an end block of F . This discussion completes the proof of Claim 7. □

If (G0, C0) is a circuit graph, then we are done. So, suppose that (G0, C0) is not a circuit graph.
Since G0 is 2-connected, there exists a cut set S of order two such that G0 − S has a component
containing no vertices of C0. Recall that y is the vertex of G0 obtained by contracting

∪m−1
i=0 Bi ∪

IH(Bm) ∪ C[u0, v0]. Since (G,C) is a circuit graph, we have y ∈ S. Let z be the vertex in S with
z ̸= y.

Note that F is an induced subgraph of G0 − y. Thus, z is contained in F and z separates some
vertices in F from C. However, it follows from Claim 7 that F is 2-connected, and hence z = u′ = v′.
By the choice of u′ and v′, we have F − z = D′ and D′ has no neighbor in C[v0, u0] − {v0, z, u0}. It
follows from Lemma 10 (ii) that D′ has no neighbor in C[u0, v0] − {v0, u0}. Hence, D′ has only at
most three neighbors, which are u0, v0 and z.

It follows from Lemma 10 (ii) and the planarity of G that D′ has at most two end blocks. (Since
otherwise, at least one of the end blocks can have only one neighbor in C, contradicting that (G,C)
is a circuit graph.) On the other hand, it follows from Claim 5 that D′ has at least two end blocks,
and hence D′ has exactly two end blocks. Moreover, all of u0, z and v0 are neighbors of D′ and hence
conditions (D3) and (D4) hold.

Let G′
0 = G0 −D′. Let x be a vertex in G′

0 − V (C0). Note that x is also a vertex in G − V (C).
Since (G,C) is a circuit graph, there exist three pairwise internally disjoint paths P1, P2 and P3 in
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G from x to C. Since D consists of some components of H, the paths P1, P2, and P3 exist even in
G − D. Let wi be the end vertex of Pi in C for i ∈ {1, 2, 3}. It follows from Lemma 10 (ii) that
w1, w2, w3 ̸∈ V (C[u0, v0])−{u0, v0}. By the existence of D′ and z and the planarity of G, at most one
of the vertices w1, w2 and w3 belongs to {u0, v0}. These discussions imply that P1, P2 and P3 are still
paths in G′

0 from x to C0 such that P1, P2 and P3 are pairwise disjoint except for x. This holds for
every vertex x in G′

0 − V (C0), and hence (G′
0, C0) is also a circuit graph. Therefore (D5) also holds.

This discussion completes the proof of Lemma 11 for a maximal extended chain of blocks of Type
1.1, 1.2, 1.4 or 2.1. □

Type 1.3 or 2.2.
Let x be a vertex in G0−V (C0). Note that x is also a vertex in G−V (C). Since (G,C) is a circuit

graph, there exist three paths P1, P2 and P3 in G from x to C such that P1, P2 and P3 are pairwise
disjoint except for x. By the conditions of Types 1.3 and 2.2 and by Lemma 10 (ii), two of the paths
P1, P2 and P3, say P1 and P2 by symmetry, use no vertex in

∪m−1
i=0 Bi ∪ IH(Bm) ∪ C[u0, v0]. Then we

can find three paths P1, P2 and P ′
3 in G0 from x to C0 such that P1, P2 and P ′

3 are pairwise disjoint
except for x, where P ′

3 is the path in G0 from x to y such that P ′
3 corresponds to P3, or P

′
3 = P3 if P3

does not use a vertex in IH(Bm) ∪ {u0, v0}. This holds for every vertex x in G0 − V (C0), and hence
(G0, C0) is also a circuit graph. This completes the proof for Type 1.3 or 2.2, and the proof of Lemma
11. □

5 Sharpness

In this section, we give several examples showing sharpness of our results.
Let H be a graph embedded in a closed surface. For each face of H, we put a vertex v in its

interior and join v with the vertices on its boundary. The resulting graph G is the face subdivision of
H. Obviously, the representativity of G is at least that of H when H is embedded in a non-spherical
closed surface.

The following proposition shows that Theorems 2 and 3 are “essentially” tight.

Proposition 12 For each closed surface F2 with Euler characteristic χ, there exist infinitely many
triangulations G on F2 such that every spanning closed walk of G has length at least 4

3(|V (G)| − χ).
Moreover, if χ ≤ 1, then such a graph G can be chosen so that the representativity of G is arbitrarily
large.

Proof. Let T be a triangulation of F2 with |V (T )| = t, and let G be the face subdivision of T . Then,
|V (G) − V (T )| = 2(t − χ) and |V (G)| = 3t − 2χ. Let W be a spanning closed walk of G. Since
V (G)− V (T ) is independent in G, we have

Length(W ) ≥ 2|V (G)− V (T )| = 4(t− χ) =
4

3
(|V (G)| − χ),

where Length(W ) denotes the length of W . In order to make the representativity of G large, we take
a triangulation T with large representativity. □

Unfortunately, this proposition does not show the sharpness of Theorem 2. In fact, we expect that
4
3(n− 2) (for n ≥ 8) will be the sharp bound for the planar case.

However, the following proposition shows that Theorem 5 is best possible.
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Proposition 13 There exist infinitely many circuit graphs G such that every spanning closed walk of
G has length at least 4

3(|V (G)| − 1).

Proof. Let T be a triangulation of the sphere with |V (T )| = t, and let G be obtained from the face
subdivision of T by deleting one vertex of T . Then, |V (G)− V (T )| = 2t− 4 and |V (G)| = 3t− 5. Let
W be a spanning closed walk of G. Since V (G)− V (T ) is independent in G, we have

Length(W ) ≥ 2|V (G)− V (T )| = 2(2t− 4) =
4

3
(|V (G)| − 1),

as desired. □

Finally, we note that we have not found any example showing that the assumption on the repre-
sentativity in Theorem 3 is necessary. It might be true that every 3-connected graph G embedded in
a closed surface with Euler characteristic χ has a spanning closed walk with at most 4

3(|V (G)| − χ)
edges.
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Appendix: Proof of Theorem 3

Using the result in [24], Kawarabayashi, Nakamoto and Ota [16] proved the following result. (See
Theorem 3.4 in [16], and also Theorems 3.1 and 3.2. The subgraph we can find by Lemma 14 is called
a starlike I3CP graph in [16].) Note that the second part of Lemma 14 is not stated in [16] explicitly,
and hence we show it in this paper.

B2
0

G0

v3

B1
0B1

m1

v1p1

B2
m2

p2

p3

B3
0 B3

m3

D1 D2

D3

v2

Figure 13: A circuit graph (G0, C0) and three chains of blocks D1,D2,D3 desired in Lemma 14.

Lemma 14 For any closed surface F2 with Euler characteristic χ, there exists a positive integer
r = r(F2) such that if G is a 3-connected graph on F2 with representativity at least r, then G has a
spanning subgraph obtained from a circuit graph (G0, C0) and t chains of blocks D1,D2 · · · ,Dt, say
Di = Bi

0B
i
1 · · ·Bi

mi
for 1 ≤ i ≤ t, with t ≤ −2χ+ 2 by identifying a vertex vi in C0 and a vertex pi of

IDi(Bi
0) for each 1 ≤ i ≤ t. Moreover, we can take such a spanning subgraph so that for 1 ≤ i ≤ t, there

exists a vertex ui in C0 such that ui is a neighbor of IDi(Bi
j) in G for 0 ≤ j ≤ mi with IDi(Bi

j) ̸= ∅.

To prove the second part, we need a few terminology that were defined in [16].
First we consider the case where F2 is an orientable surface. Then the genus of F2 is g, where

g = (2− χ)/2. Let Γ(F2) = {a1, . . . , ag, b1 . . . , bg} be a set of simple closed curves on F2 such that (i)
{a1, . . . , ag} is a set of g pairwise non-homotopic disjoint essential simple closed curves, (ii) {b1, . . . , bg}
is a set of g pairwise disjoint simple closed curves such that each bi crosses ai exactly once and never
crosses aj for 1 ≤ j ≤ g with j ̸= i. Let G be a 3-connected graph on a closed surface F2. Suppose
that G has two sets of pairwise disjoint cycles {A1, A

′
1, . . . , Ag, A

′
g} and {B1, B

′
1, . . . , Bg, B

′
g} such that

(i) Ai and A′
i are homotopic to ai ∈ Γ(F2), (ii) Bj and B′

j are homotopic to bj ∈ Γ(F2), and (iii) each
of Ai and A′

i is disjoint from Bj and B′
j if j ̸= i.

Let Ai denote the annulus bounded by Ai and A′
i. We suppose further that G has pairwise disjoint

paths C1, C
′
1, . . . , Cg−1, C

′
g−1 such that (iv) each of Ci and C ′

i connects A
′
i and A′

i+1, and runs across
both of the annuli Ai and Ai+1, namely, Ci and C ′

i intersect every closed curve in Ai (resp., Ai+1)
homotopic to ai (resp., ai+1), and (v) Ci and C ′

i together with a segment of A′
i and a segment of A′

i+1

bound a strip (a thin 2-cell region) that intersects none of A1, A
′
1, . . . , Ag, A

′
g, B1, B

′
1, . . . , Bg and B′

g

except for Ai, A
′
i, Ai+1 and A′

i+1.
We say that G satisfies Cutting Condition if G has the above 4g cycles and 2g − 2 paths. Note

that the argument in Lemma 14 works well even if a closed curve b1 is 1-sided. In this case, we have
to take a single cycle separating a thin Möbius band including b1 and disjoint from all Aj , A

′
j , Bj and

B′
j for 2 ≤ j ≤ g, instead of the annulus bounded by B1 and B′

1. In the proof of Lemma 14, we only

deal with the case where F2 is orientable, since the non-orientable case is similar to it.

Proof of Lemma 14.
The first part of Lemma 14 follows from the proof in [16], but to show the second part, we give an

overview of the proof in [16].
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By a result in [24], there exists a positive integer r = r(F2) such that if G is a 3-connected graph
on F2 with representativity at least r, then G satisfies Cutting Condition.

Consider an annulus Ak bounded by two cycles Ak and A′
k of G for 1 ≤ k ≤ g. By choosing Ak

and A′
k so that Ak contains as few faces as possible, we can show that Ak has no inner vertex. Let G′

be the graph obtained from G by removing all inner edges of Ak together with the region Ak for all k
with 1 ≤ k ≤ g. Then G′ is a spanning plane subgraph of G that is embedded in the sphere with 2g
boundary components A1, A

′
1, . . . , Ag, A

′
g. Then we will cut G′ by B1, B

′
1, . . . , Bg, B

′
g, C1, C

′
1, . . . , Cg−1

and C ′
g−1.

Let B̃k be the annulus bounded by Bk and B′
k. Take a subpath Q1 of Bk and a subpath Q2 of B′

k

both joining Ak and A′
k in G0. Consider the strip Bk contained in B̃k − (B̃k ∩ Ak) and bounded by

Ak∪A′
k∪Q1∪Q2. Let x, y, x

′ and y′ be the four corners of the strip Bk such that x ∈ V (Ak)∩V (Q1),
y ∈ V (Ak)∩V (Q2), x

′ ∈ V (A′
k)∩V (Q1), and y′ ∈ V (A′

k)∩V (Q2). Let H be the plane graph consisting
of the vertices and the edges contained in Bk. Then there exists four paths P1, P2, Q1 and Q2 such
that P1 ⊂ Ak, P2 ⊂ A′

k, Q1 ⊂ Bk, Q2 ⊂ B′
k and P1 ∪ P2 ∪ Q1 ∪ Q2 bounds H. Choosing Bj and B′

j

so that the number of faces in Bj is as small as possible, we can add the edges xy and x′y′ through
inside of H, and the region B′

j bounded by Q1 ∪Q2 ∪ {xy, x′y′} contains no inner vertex. Let D and
D′ be the plane subgraph of H ∪ {xy, x′y′} bounded by P1 ∪ {xy} and by P2 ∪ {x′y′}, respectively.
Then both D− y and D− y′ is a chain of blocks, which may consists of only one vertex. Now remove
all inner edges of B′

k together with all faces in B′
k, all edges connecting y and D − y, and all edges

connecting y′ and D′ − y.
After doing the same operation as above for all pairs of Ck and C ′

k, in total, we get a circuit graph
(G0, C0) and 4g− 2 chains of blocks D1, · · · ,D4g−2 by identifying a vertex vi in C0 and a vertex pi of
Di for 1 ≤ i ≤ 4g − 2. (Notice that each Di corresponds to D− y or D′ − y′ for some pair Bk and B′

k
or some pair Ck and C ′

k as above. Identifying the two vertices vi and pi, we obtain the corresponding
vertex x.) If Di consists of only one vertex, (that is, if D − y or D′ − y consists of only x,) then we
can delete it. Thus, we obtain t chains of blocks with t ≤ 4g − 2 = −2χ+ 2, and hence the first part
holds.

Now we will prove the second part. Suppose t ≥ 1 and let 1 ≤ i ≤ t. We may assume that
Di ̸= ∅ and Di = D − y for D in the above argument. We use the same terminology as above. Let
Di = Bi

0B
i
1 · · ·Bi

mi
and x = pi ∈ IDi(Bi

0). Since G is 3-connected, for 0 ≤ j ≤ mi with IDi(Bi
j) ̸= ∅,

the set IDi(Bi
j) has a neighbor uij in G with uij ̸∈ V (D). Moreover, we may assume that ui0 ̸= pi and

uimi
̸= y. By the construction, ui0, u

i
1, · · · appear in A′

k in this order. (Possibly, uij = uij+1 for some

j.) If ui0 ̸= uimi
, then A′

k ∪ (Di − pi) induces a 2-connected graph. So we can add Di − pi into A′
k and

decrease the integer t. Thus, ui0 = ui1 = · · · = uimi
. Let ui = ui0. Then ui is a neighbor of IDi(Bi

j) in

G for 0 ≤ j ≤ mi with IDi(Bi
j) ̸= ∅. □

Proof of Theorem 3. By Lemma 14, there exists an integer r such that if G is a 3-connected graph
on F2 with representativity at least r, then G has a spanning subgraph as in Lemma 14. Since (G0, C0)
is a circuit graph, it follows from Theorem 5 that 2G0 has a spanning even subgraph R0 with

|E(R0)| ≤
4|V (G0)| − 4

3
. (2)

Let 1 ≤ i ≤ t and let Gi be the subgraph induced by {ui} ∪
∪mi

j=0 V (Bi
j)− {pi} and let Ci be the

outer boundary of Gi. Note that (Gi, Ci) is a circuit graph, unless ui has degree one. The exceptional
case happens only when (i) mi = 0, or (ii) mi = 1 and Bi

0 is an edge. Moreover, when (Gi, Ci) is not
a circuit graph, then (G∗

i , C
∗
i ) is a circuit graph, where G∗

i = Gi − ui and C∗
i = Ci − ui, unless G

∗
i has

at most two vertices.
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If (Gi, Ci) is a circuit graph, then it follows from Theorem 5 or Proposition 6 that 2Gi has a

spanning even subgraph Ri with |E(Ri)| ≤ 4|V (Gi)|−3
3 . On the other hand, suppose that (i) or (ii)

holds. If (G∗
i , C

∗
i ) is a circuit graph, then it follows from Theorem 5 or Proposition 6 that 2G∗

i has

a spanning even subgraph R∗
i with |E(R∗

i )| ≤
4|V (G∗

i )|−3
3 . Let Ri be the subgraph of 2Gi obtained

from R∗
i by adding the two edges in 2Gi incident with ui. Then |E(Ri)| ≤

4|V (G∗
i )|−3
3 +2 = 4|V (Gi)|−1

3 .
If G∗

i is isomorphic to K2, then the two vertices of G∗
i and pi (when (i) occurs) or ui (when (ii)

occurs) form a triangle. In these cases, the triangle, say Ri, is a spanning even subgraph of 2Gi with

|E(Ri)| = 3 = 4|V (Gi)|−3
3 . Finally if G∗

i consists of only one vertex, then let Ri is the spanning even
subgraph consisting of the two edges e and e′ of 2Gi such that both e and e′ correspond to an edge

connecting the unique vertex in G∗
i and ui. Then |E(Ri)| = 2 = 4|V (Gi)|−2

3 . In either case, we obtain
a spanning even subgraph Ri of 2Gi with

|E(Ri)| ≤
4|V (Gi)| − 1

3
. (3)

Let R =
∪t

i=0Ri. Since Gi shares only one vertex with G0 for 1 ≤ i ≤ t, we have

|V (G)| =
t∑

i=0

|V (Gi)| − t.

Then R is a spanning even subgraph of 2G. Moreover, by inequalities (2) and (3),

|E(R)| =

t∑
i=0

|E(Ri)|

≤ 4|V (G0)| − 4

3
+

t∑
i=1

4|V (Gi)| − 1

3

=
4
∑t

i=0 |V (Gi)| − t− 4

3

=
4
(
|V (G)|+ t

)
− t− 4

3

=
4|V (G)|+ 3t− 4

3

≤ 4|V (G)|+ 3(−2χ+ 2)− 4

3

=
4|V (G)| − 6χ+ 2

3
.

By Proposition 4, this discussion completes the proof of Theorem 3. □
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