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Abstract

Let H be a family of connected graphs. A graph G is said to be H-free if G is H-free
for every graph H in H. In [1] it was pointed that there is a family of connected graphs
H not containing any induced subgraph of the claw having the property that the set
of H-free connected graphs containing a claw is finite, provided also that those graphs
have minimum degree at least two and maximum degree at least three. In the same
work, it was also asked whether there are other families with the same property. In
this paper we answer this question by solving a wider problem. We consider not only
claw-free graphs but the more general class of star-free graphs. Concretely, given t ≥ 3,
we characterize all the graph families H such that every large enough H-free connected
graph is K1,t-free. Additionally, for the case t = 3 we show the families that one gets
when adding the condition |H| ≤ k for each positive integer k.
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1 Introduction

In this paper we only consider simple finite graphs. Let G be a connected graph. Given a
connected graph H, G is said to be H-free if G does not contain H as an induced subgraph.
Given a family of connected graphs H, G is said to be H-free if G is H-free for all H ∈ H.
Let δ(G) and ∆(G) denote the minimum and the maximum degree of G, respectively.

If we have several families of forbidden subgraphs implying some given property, it is
important to compare them to understand which families lead to more general results.
Concretely, if we have two families of graphs F1 and F2, and all F1-free graphs are also
F2-free graphs, then we can say that F2 is more general, in the sense that a result that
states that all F2-free graphs satisfy some property is more general than one that says that
all F1-free graphs satisfy the same property.

To do such comparisons, one can define some notion of order between forbidden families
of graphs. The usual order used is to define that a family F2 is bigger than another family F1

if for each graph H in F2, there is a graph in F1 that is an induced subgraph of H. But the
authors of [1] showed that sometimes a simple comparison by “inclusion of graphs” between
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families might not be enough. Consider the following theorem about graphs having a 2-
factor (see Sections 2 and 4 for graph definitions). Remember that a 2-factor is a spanning
subgraph with every vertex having degree two.

Theorem 1 ([1]). Let G be a connected graph with δ(G) ≥ 2 and ∆(G) ≥ 3.

(i) If G is {Z2,3,K1,3}-free then G has a 2-factor.

(ii) If G is {Z2,3, Y4,W
3
2 ,K2,3}-free and |V (G)| ≥ 9 then G has a 2-factor.

Because Z2,3 is an induced subgraph of it self, and all three graphs Y4, W 3
2 and K2,3

contain a K1,3 as an induced subgraph, we can say that (ii) is more general than (i). But
on the other hand, we have the following result.

Theorem 2 ([1]). Let G be a connected graph with δ(G) ≥ 2 and ∆(G) ≥ 3. If G is
{Z2,3, Y4,W

3
2 ,K2,3}-free and |V (G)| ≥ 9, then G is K1,3-free.

Theorem 2 says that {Z2,3,K1,3}-free graphs and {Z2,3, Y4,W
3
2 ,K2,3}-free are essentially

(under some conditions) the same. This is not clear just by looking at the graphs in the
families.

Another interesting point about Theorem 2 is that even though no graph of the family
H = {Z2,3, Y4,W

3
2 ,K2,3} is an induced subgraph of K1,3, when considering the H-free

graphs under certain conditions, the graph K1,3 is also forbidden. The authors of [1] were
interested in finding a family of forbidden subgraphs implying a 2-factor that does not
contain a star. But even though there is no star in {Y4, Z2,3,W

3
2 ,K2,3}, by Theorem 2 it

is somehow implicitly forbidden. That is why the authors of [1] called this phenomenon
implicit forbiddance.

In the view of the previous results, in order to get more information of the implicit
relation between families of forbidden subgraphs, it is important to research further this
phenomenon. As a first step, we consider the case of K1,3-free graphs, also in an effort to
try to extend Theorem 2. We do so also because claw-free graphs have been widely studied
in the literature, as they are closely related to line graphs, and on the other side, there are
many interesting results in connection with matching theory and hamiltonian graph theory
(see for example [6] for a survey on claw-free graphs). In this paper, we actually consider a
more general class, star-free graphs. Concretely, we consider the following problem. Given
t ≥ 3, characterize all the families of connected graphs H such that every large enough
H-free connected graph is K1,t-free. In this paper, we solve this problem for every t ≥ 3.

The rest of the paper is organized as follows. In Section 2, we make all needed definitions
and present our main results. In Section 3, we give the proofs for those results. In Section
4, we consider restricting the size of the family of forbidden subgraphs for the case t = 3.
Concretely, we characterize the families of forbidden subgraphs H with |H| ≤ k for each
k ≥ 1. See Section 4 for a formal statement of the problem. In Section 5, we give the proofs
for the theorems presented in Section 4. In Section 6, we show an application of our results.
Finally, in Section 7 we make some discussion, propose some open questions and comment
on the cases t = 1 and t = 2.

2 Definitions and main results

If H1 and H2 are two connected graphs, we write H1 � H2 to indicate that H1 is an induced
subgraph of H2. We say that a family of connected graphs H is redundant if there are two
different graphs H1, H2 ∈ H such that H1 � H2. It is easy to see that we can restrict our
problem to considering only non-redundant families.

Define G as the set of all non-redundant families of connected graphs. Let t ≥ 3 and
define H(t) as the set of families H ∈ G such that there is a constant n0 = n0(t,H) with
the property that all H-free connected graphs G with |V (G)| ≥ n0 are K1,t-free. Then, our
problem is reduced to finding all the elements in the set H(t).
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We define a binary relation “≤” in G as follows. For H1, H2 ∈ G, we say that H1 ≤ H2

if for each H2 ∈ H2, there is an H1 ∈ H1 such that H1 � H2. It is easy to see that the
relation “≤” defines a partial order in G. Furthermore, if H1 ≤ H2 then any H1-free graph
is also an H2-free graph (see for example Lemma 3 of [10]).

Kn is the complete graph on n vertices. Pn is the path on n vertices. Kn,m is the
complete bipartite graph with partite sets on n and m vertices.

Let t ≥ 2. To state our results we define the following graphs (see Figure 1).

• Y t
m is a path on m vertices with t− 1 extra vertices attached to the first vertex of the

path. The last vertex of the path is called the tail of Y t
m. (m ≥ 1)

• Y t
s,m is the graph obtained by joining s degree one vertices of a K1,t with the first

vertex of the path on m vertices. The last vertex of the path is called the tail of Y t
s,m.

(m ≥ 1, 1 ≤ s ≤ t)

• Ŷ t
s,m is the graph obtained by joining s degree one vertices of a K1,t with the first

vertex of the path on m vertices and adding the edge between the center of the K1,t

and the first vertex of the path. The last vertex of the path is called the tail of Ŷ t
s,m.

(m ≥ 1, 1 ≤ s ≤ t)

• W t
q is the graph obtained by completely joining a Kq with t independent vertices.

(q ≥ 1)

• T t
s,q is the graph obtained by joining s degree one vertices of a K1,t with all the vertices

of a Kq. (q ≥ 1, 1 ≤ s ≤ t)

• Dt
s,q is the graph obtained by joining s degree one vertices and the center of a K1,t

with all the vertices of a Kq. (q ≥ 1, 0 ≤ s ≤ t)

• Zt
m,r, Z

t
s,m,r and Ẑt

s,m,r are the graphs obtained by identifying a vertex of a Kr with

the tail of a Y t
m, Y

t
s,m and Ŷ t

s,m, respectively. (m ≥ 1, r ≥ 1, 1 ≤ s ≤ t)

For t ≥ 3, define the following families of graphs.

• T t(q) = { T t
s,q: 2 ≤ s ≤ t− 1 }.

• Dt(q) = { Dt
s,q: 2 ≤ s ≤ t− 1 }.

• Yt(m) = { Y t
s,m: 2 ≤ s ≤ t− 2 }.

• Zt(m, r) = { Zt
s,m,r: 2 ≤ s ≤ t− 2 }.

• Ŷt(m) = { Ŷ t
s,m: 2 ≤ s ≤ t− 2 }.

• Ẑt(m, r) = { Ẑt
s,m,r: 2 ≤ s ≤ t− 2 }.

• YZt(m, r) = Yt(m+2)∪Zt(1, r)∪ . . .∪Zt(m, r)∪Ŷt(m+2)∪Ẑt(1, r)∪ . . .∪Ẑt(m, r).

• Ht(m, l, q, r) = {K1,l,W
t
q} ∪ {Y t

m+2, Z
t
1,r, . . . , Z

t
m,r} ∪ T t(q) ∪ Dt(q) ∪ YZt(m, r).

Notice that for the case t = 3, Yt(m), Zt(m, r), Ŷt(m) and Ẑt(m, r) are empty and both
T t(q) and Dt(q) have only one element.

For t ≥ 3, define the following subset of G.

• F(t) = { H ∈ G: H ≤ Ht(m, l, q, r) for some m ≥ 1, l ≥ t+ 1, q ≥ 2, r ≥ 3}.
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Figure 1: Some forbidden subgraphs

Our main result in this paper is the following theorem. It gives the characterization of
families of forbidden subgraphs for star-free graphs we described in Section 1.

Theorem 3. Let t ≥ 3, then H(t) = F(t).

For our proofs we need the following definitions. For terminology and notation not
defined in this paper, we refer the reader to [4].

Let G be a connected graph. For v ∈ V (G), define N i
G(v) = {w ∈ V (G): the distance

from v to w is exactly i}. Notice that N0
G(v) = {v} and N1

G(v) = NG(v). If the graph G is
obvious from the context, we sometimes write N i(v) for N i

G(v).

4



A clique of a graph is a set of pairwise adjacent vertices, and an independent set is a
set of pairwise nonadjacent vertices. For two positive integers l and r, the Ramsey number
R(l, r) is the minimum positive integer R such that any graph of order at least R contains
either an independent set of cardinality l or a clique of cardinality r. The Ramsey number
R(l, r) exists for every positive integers l and r (see for example [4]).

If G is a graph and S ⊆ V (G), for S′ ⊆ S, define BS(S′) = {v ∈ V (G) : N(v)∩S = S′}.
Observation: if for some N ⊆ V (G), there is a constant k such that for every S′ ⊆ S,

|N ∩ BS(S′)| ≤ k, then |N | ≤ 2|S| · k (remember that the number of subsets of a set S is
2|S|). We will implicitly use this fact in the proofs of several lemmas in section 3.

3 Proof of Theorem 3

First, we will prove the following theorem that shows that forbidding some family of F(t) is
enough to imply that the graph is star-free provided it is large enough.

Theorem 4. Let t ≥ 3. Then F(t) ⊆ H(t).

Before giving the proof, we would like to comment on non-redundancy of the family
Ht(m, l, q, r). It is not difficult to check that the family Ht(m, l, q, r) is non-redundant for
the parameters used in the definition of F(t) (m ≥ 1, l ≥ t + 1, q ≥ 2, r ≥ 3). These
conditions were chosen so that Ht(m, l, q, r) is not redundant nor it contains any induced
subgraph of K1,t. Moreover, reducing by 1 any of the constants in the condition would make
Ht(m, l, q, r) either redundant or contain an induced subgraph of K1,t. For example, if q = 1
then for all m ≥ 1 and all 1 ≤ s ≤ t we have that T t

s,q � Y t
s,m and T t

s,q � Zt
s,m; additionally

W t
q is a K1,t.
We divide the proof of Theorem 4 in several lemmas that we state and prove bellow.

Lemma 5. Let t ≥ 3 and let G be a graph with an induced K1,t of center x0. If G is

({Y t
m} ∪ Yt(m) ∪ Ŷt(m))-free for some m ≥ 3, then Nm+1(x0) = ∅.

Proof. Let Y ⊆ V (G) with |Y | = t, such that {x0} ∪ Y is an induced K1,t in G. Suppose
that Nm+1(x0) 6= ∅. We will show that G contains a Y t

m, some graph of Yt(m) or some

graph of Ŷt(m), which is a contradiction.
Let k = m + 1 and let P = x0x1 · · ·xk be an induced path of G with xi ∈ N i(x0) for

all 0 ≤ i ≤ k. Notice that N j(x0) ∩ N(Y ) = ∅ for all 3 ≤ j ≤ k. Otherwise, an element
v ∈ N j(x0) ∩N(Y ) would have a path of length 2 to x0, passing through some element of
Y , contradicting that v ∈ N j(x0). Then N(Y ) ∩ P ⊆ {x0, x1, x2}.

Let Y1 = N(x1) ∩ Y and Y2 = N(x2) ∩ Y . If |Y2| ≥ t − 1, then Y2 ∪ {x2, . . . , xm+1}
contains a Y t

m. If 2 ≤ |Y2| ≤ t − 2, then (Y − Y2) ∪ {x0} ∪ Y2 ∪ {x2, . . . , xm+1} is a Y t
s,m,

where s = |Y2|. If |Y2| = 1, then (Y − Y2) ∪ {x0} ∪ Y2 ∪ {x2, . . . , xm−1} is a Y t
m.

Suppose now that |Y2| = 0, that is N(x2)∩Y = ∅. If |Y1| ≥ t−1, then Y1∪{x1, . . . , xm}
contains a Y t

m. If 2 ≤ |Y1| ≤ t− 2, then (Y −Y1)∪{x0}∪Y1 ∪{x1, . . . , xm} is a Ŷ t
s,m, where

s = |Y1|. If |Y1| ≤ 1, then (Y − Y1) ∪ {x0, . . . , xm−1} contains a Y t
m.

Lemma 6. Let t ≥ 3 and let G be a graph with an induced K1,t of center x0. Suppose
that G is ({K1,l, Z

t
1,r,W

t
q} ∪ Dt(q))-free for some l ≥ t + 1, r ≥ 3, q ≥ 2. Then |N(x0)| <

2t ·R(l,max(r, q)).

Proof. Let Y ⊆ V (G) with |Y | = t, such that {x0} ∪ Y is an induced K1,t in G. Let
Y ′ ⊆ Y . We will show that |N(x0) ∩ BY (Y ′)| < R(l,max(r, q)), and since |Y | = t we get
that |N(x0)| < 2t ·R(l,max(r, q)).

If |Y ′| ≤ 1, then |Y − Y ′| ≥ t − 1 and so |N(x0) ∩ BY (Y ′)| < R(l, r), since otherwise
(Y − Y ′) ∪ {x0} ∪ (N(x0) ∩BY (Y ′)) contains a Zt

1,r or a K1,l.
If 2 ≤ |Y ′| ≤ t − 1, then |N(x0) ∩ BY (Y ′)| < R(l, q), since otherwise Y ′ ∪ (Y − Y ′) ∪

{x0} ∪ (N(x0) ∩BY (Y ′)) contains a Dt
s,q or a K1,l, where s = |Y ′|.
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If |Y ′| = t, then |N(x0) ∩ BY (Y ′)| < R(l, q), since otherwise Y ′ ∪ (N(x0) ∩ BY (Y ′))
contains a W t

q or a K1,l.

Lemma 7. Let t ≥ 3 and let G be a graph with an induced K1,t of center x0. Suppose that

G is ({K1,l, Z
t
1,r, Z

t
2,r,W

t
q} ∪ Ẑt(1, r) ∪ T t(q))-free for some l ≥ t + 1, r ≥ 3, q ≥ 2. Then

|N2(x0)| < 2t ·R(l,max(r, q)) · |N(x0)|.

Proof. Let Y ⊆ V (G) with |Y | = t, such that {x0} ∪ Y is an induced K1,t in G. Let
x1 ∈ N(x0). Let Y ′ ⊆ Y . Let N = N2(x0)∩N(x1). It suffices to show that |N ∩BY (Y ′)| <
R(l,max(r, q)).

If |Y ′| = 1, then |Y − Y ′| = t − 1 and so |N ∩ BY (Y ′)| < R(l, r), since otherwise
(Y − Y ′) ∪ {x0} ∪ Y ′ ∪ (N ∩BY (Y ′)) contains a Zt

2,r or a K1,l.
If 2 ≤ |Y ′| ≤ t− 1, then |N ∩BY (Y ′)| < R(l, q), since otherwise (Y − Y ′) ∪ {x0} ∪ Y ′ ∪

(N ∩BY (Y ′)) contains a T t
s,q or a K1,l, where s = |Y ′|.

If |Y ′| = t, then |N ∩ BY (Y ′)| < R(l, q), since otherwise Y ′ ∪ (N ∩ BY (Y ′)) contains a
W t

q or a K1,l.
Suppose now that |Y ′| = 0, that is N ∩BY (Y ′)∩N(Y ) = ∅. Notice that if x1 ∈ Y , then

N ∩BY (Y ′) = ∅. Then we may suppose that x1 /∈ Y . Let Y1 = Y ∩N(x1).
If |Y1| ≥ t − 1, then |N ∩ BY (Y ′)| < R(l, r), since otherwise Y1 ∪ {x1} ∪ (N ∩ BY (Y ′))

contains a Zt
1,r or a K1,l.

If 2 ≤ |Y1| ≤ t− 2, then |N ∩BY (Y ′)| < R(l, r), since otherwise (Y − Y1) ∪ {x0} ∪ Y1 ∪
{x1} ∪ (N ∩BY (Y ′)) contains a Ẑt

s,1,r or a K1,l, where s = |Y1|.
If |Y1| ≤ 1, then |Y − Y1| ≥ t − 1 and so |N ∩ BY (Y ′)| < R(l, r), since otherwise

(Y − Y1) ∪ {x0, x1} ∪ (N ∩BY (Y ′)) contains a Zt
2,r or a K1,l.

Lemma 8. Let t ≥ 3 and let G be a graph with an induced K1,t of center x0. Let i ≥ 2 and

suppose that G is ({K1,l, Z
t
i−1,r, Z

t
i,r, Z

t
i+1,r} ∪Zt(i− 1, r)∪ Ẑt(i, r))-free for some l ≥ t+ 1

and r ≥ 3. Then |N i+1(x0)| < R(l, r) · |N i(x0)|.

Proof. Let Y ⊆ V (G) with |Y | = t, such that {x0} ∪ Y is an induced K1,t in G. Let
xi ∈ N i(x) and let x0x1 · · ·xi be an induced path with xj ∈ N j(x) for all 0 ≤ j ≤ i. Let
N = N i+1(x0) ∩N(xi). It suffices to show that |N | < R(l, r).

Let Y1 = Y ∩N(x1) and Y2 = Y ∩N(x2). As in the proof of Lemma 5, for all 3 ≤ j ≤ i+1,
N j(x) ∩N(Y ) = ∅.

If |Y2| ≥ t− 1, then |N | < R(l, r), since otherwise Y2 ∪{x2, . . . , xi}∪N contains a Zt
i−1,r

or a K1,l.
If 2 ≤ |Y2| ≤ t−2, then |N | < R(l, r), since otherwise (Y −Y2)∪{x0}∪Y2∪{x2, . . . , xi}∪N

contains a Zt
s,i−1,r or a K1,l, where s = |Y2|.

If |Y2| = 1, then |N | < R(l, r), since otherwise (Y − Y2) ∪ {x0} ∪ Y2 ∪ {x2, . . . , xi} ∪N
contains a Zt

i+1,r or a K1,l.
Suppose now that |Y2| = 0, that is N(x2) ∩ Y = ∅.
If |Y1| ≥ t− 1, then |N | < R(l, r), since otherwise Y1 ∪ {x1, . . . , xi} ∪N contains a Zt

i,r

or a K1,l.
If 2 ≤ |Y1| ≤ t−2, then |N | < R(l, r), since otherwise (Y −Y1)∪{x0}∪Y1∪{x1, . . . , xi}∪N

contains a Ẑt
s,i,r or a K1,l, where s = |Y1|.

If |Y1| ≤ 1, then |Y − Y1| ≥ t − 1 and so |N | < R(l, r), since otherwise (Y − Y1) ∪
{x0, . . . , xi} ∪N contains a Zt

i+1,r or a K1,l.

We use the above lemmas to prove Theorem 4.

Proof of Theorem 4. Let H ∈ F(t). Let m ≥ 1, l ≥ t + 1, q ≥ 2 and r ≥ 3 such that
H ≤ Ht(m, l, q, r).

Let G be an H-free connected graph. Suppose that there is an induced K1,t of center
x0. We will show that |V (G)| is bounded by a function depending only on t, l,m, q and r.

6



Notice that since G is Y t
m+2-free, then G is Zt

i,r-free for all i ≥ m+1. Since we also know
that G is Zt

i,r-free for all 1 ≤ i ≤ m, we conclude that G is Zt
i,r-free for all i ≥ 1. Using

a similar argument, we have that G is Zt(i, r)-free and Ẑt(i, r)-free for all i ≥ 1. Thus, G
satisfies all the conditions of Lemmas 5, 6, 7 and 8.

By Lemma 5, Nm+1(x) = ∅. Then we only need to show that N i(x) is bounded for all
1 ≤ i ≤ m. By Lemmas 6 and 7, N(x) and N2(x) are bounded. By Lemma 8, |N i+1(x)| <
R(l, r) · |N i(x)| for all 2 ≤ i ≤ m − 1. Using an inductive argument we get that |N i(x)| <
R(l, r)i−2 · |N2(x)| for all 3 ≤ i ≤ m. We conclude that |N i(x)| < R(l, r)m−2 · |N2(x)| for
all 3 ≤ i ≤ m.

Finally, we prove our main theorem.

Proof of Theorem 3. By Theorem 4, we already know that every family of graphs in F(t)
is also in H(t). It remains to show that every family of graphs in H(t) is also in F(t).

Let H ∈ H(t). Then there is a positive integer n0 such that every H-free connected
graph of order at least n0 is K1,t-free. Let n be an integer such that n ≥ max(n0, t+ 1).

Consider the family H′ = Ht(n, n, n, n). All the graphs in H′ are connected graphs of
order at least n0 containing an induced K1,t. Then it must be that no graph of H′ is H-free.
In other words, for each H ′ ∈ H′, there is an H ∈ H such that H � H ′. But this is exactly
the definition of H ≤ H′. Then since H′ is in F(t), we conclude that H is also in F(t).

4 Restricting the size of the family of forbidden sub-
graphs

When searching for families of forbidden subgraphs implying some property on graphs, it
is usual to start by restricting the size of the family of forbidden subgraphs. The reason
for that is that it makes easier to deal with the problem and it also provides partial but
self-contained results. See [3, 7, 8, 9, 12, 13] for examples of papers using this technique.

In this section, we show the families that we obtained for each possible size of the family.
Concretely, we add the condition |H| ≤ k to some family H ∈ H(t) for some positive

integer k. We restrict ourselves to the case t = 3 (claw-free graphs) which has been widely
studied in the literature. We characterize such families for each k ≥ 1. In other words, for
each k ≥ 1, we characterize the families H ∈ H(3) such that |H| ≤ k. The result of the
characterization is expressed in Theorem 9.

To state and prove the result, we do some notation changes in graph names to reduce the
number of subindices and superindices.

• Ym is Y 3
m.

• Zm,r is Z3
m,r.

• Dq is D3
2,q.

• Tq is T 3
2,q.

We also define some additional graphs.

• Z−m,r is the graph obtained by identifying a vertex of a Kr with the end vertex of a
path on m+ 1 vertices.

• T−q is Tq with the only vertex of degree one of Tq removed.

Define the following families of graphs.

• HA
i (l, q, r) = {K1,l, Yi+2,W

2
q , Z1,r, . . . , Zi,r} (for i ≥ 1).
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• HB
i (l,m, q, r) = {K1,l, Ym,W

2
q , Z1,r, . . . , Zi−1,r, Z

−
i,r} (for i ≥ 2).

• HC
i (l, q, r) = {K1,l, Yi+2,W

3
q , Dq, Tq, Z1,r, . . . , Zi,r} (for i ≥ 1).

• HD
i (l,m, q, r) = {K1,l, Ym,W

3
q , Dq, Tq, Z1,r, . . . , Zi−1,r, Z

−
i,r} (for i ≥ 3).

Define the following subsets of G.

• F1 = { H ∈ G : H ≤ {K1,3} }.

• F3 = { H ∈ G : H ≤ {K1,l, Ym,Kr} for some l ≥ 4, m ≥ 3 and r ≥ 3}.

• F4 = { H ∈ G : H ≤ {K1,l, Ym,W
3
q , Z

−
1,r} for some l ≥ 4, m ≥ 3, q ≥ 2 and r ≥ 3}.

• F5 = { H ∈ G : H ≤ {K1,l, P4,W
3
q , Dq, Z1,r} for some l ≥ 4, q ≥ 2 and r ≥ 3}.

• F6 = { H ∈ G : H ≤ {K1,l, Ym,W
3
q , Dq, Z1,r, Z

−
2,r} for some l ≥ 4, m ≥ 4, q ≥ 2 and

r ≥ 3}.

• FA
i = { H ∈ G: H ≤ HA

i (l, q, r) for some l ≥ 4, q ≥ 2, r ≥ 3} (i ≥ 1).

• FB
i = { H ∈ G: H ≤ HB

i (l,m, q, r) for some l ≥ 4, m ≥ i+ 3, q ≥ 2, r ≥ 3} (i ≥ 2).

• FC
i = { H ∈ G: H ≤ HC

i (l, q, r) for some l ≥ 4, q ≥ 2, r ≥ 3} (i ≥ 1).

• FD
i = { H ∈ G : H ≤ HD

i (l,m, q, r) for some l ≥ 4, m ≥ i+ 3, q ≥ 2, r ≥ 3} (i ≥ 3).

The following is the main theorem of this section.

Theorem 9. Let k ≥ 1 be an integer and let H ∈ H(3) with |H| ≤ k. Then

• H ∈ Fi for some i ∈ {1, 3, 4, 5, 6} with i ≤ k or

• H ∈ FA
i for some 1 ≤ i ≤ k − 3 or

• H ∈ FB
i for some 2 ≤ i ≤ k − 3 or

• H ∈ FC
i for some 1 ≤ i ≤ k − 5 or

• H ∈ FD
i for some 3 ≤ i ≤ k − 5.

Notice that F(3) =
⋃

i≥1 F
C
i . Moreover, all the families in the other sets mentioned in

Theorem 9 are also in F(3), and so they are all in H(3). This fact can by derived from the
following lemma.

Lemma 10. The following statements hold:

(1) F1 ⊆ FC
1 , F3 ⊆ F4, F4 ⊆ F6, F5 ⊆ FC

1 and F6 ⊆ FD
3 .

(2) Let i ≥ 1, then FA
i ⊆ FC

i .

(3) Let i ≥ 2, then FB
i ⊆ FA

j for some j ≥ 1.

(4) Let i ≥ 3, then FD
i ⊆ FC

j for some j ≥ 1.

Proof. Statements (1) and (2) are easy to verify.
Proof of (3): Let i ≥ 2 and H ∈ FB

i . Since H ≤ HB
i (l,m, q, r) for some l ≥ 4, m ≥ i+ 3,

q ≥ 2 and r ≥ 3, we have that H ≤ {Ym} for some m ≥ i+ 3. Since Z−i,r � Zh,r for all h ≥ i
and all r ≥ 3, then H ∈ FA

m−2.
Proof of (4): Let i ≥ 3 and H ∈ FD

i . Since H ≤ HD
i (l,m, q, r) for some l ≥ 4, m ≥ i+ 3,

q ≥ 2 and r ≥ 3, we have that H ≤ {Ym} for some m ≥ i+ 3. Since Z−i,r � Zh,r for all h ≥ i
and all r ≥ 3, then H ∈ FC

m−2.
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5 Proof of Theorem 9

First, we prove two lemmas that deal with the inductive part of the proof of Theorem 9.

Lemma 11. Let k ≥ 4 be an integer and let H ∈ H(3) with |H| ≤ k. Suppose that
H � {K1,3}, H /∈ FA

j for all 1 ≤ j ≤ k − 3 and H /∈ FB
j for all 2 ≤ j ≤ k − 3. Suppose also

that there are graphs B1, B2, B3, H1 ∈ H such that

• B1 = K1,l for some l ≥ 4.

• B2 = Pm+1 or B2 = Ym for some m ≥ 3.

• B3 = W 2
q for some q ≥ 2.

• H1 = Z1,r1 for some r1 ≥ 3.

Then there are graphs H2, . . . ,Hk−3 in H and integers r2, . . . , rk−3 such that for all 2 ≤ i ≤
k − 3, Hi = Zi,ri and ri ≥ 3. Additionally, m ≥ k.

Proof. The proof is by induction on i.
Let 2 ≤ i ≤ k − 3 and suppose that there are graphs H1, . . . ,Hi−1 in H such that

Hj = Zj,rj for some rj ≥ 3 and all 1 ≤ j ≤ i−1. We will prove that there is a graph Hi ∈ H
such that Hi = Zi,ri for some ri ≥ 3.

Let r′ = max(r1, . . . , ri−1). Since H ≤ {K1,l,W
2
q , Z1,r′ , . . . , Zi−1,r′} and H /∈ FA

i−1, then
H � {Yi+1}. In particular, B2 = Pm+1 or B2 = Ym for some m ≥ i+ 2.

Since H ≤ {K1,l, Ym,W
2
q , Z1,r′ , . . . , Zi−1,r′} and H /∈ FB

i , then H � {Z−i,r} for all r ≥ 3.
Since H ∈ H(3), there is a positive integer n0 = n0(H) such that every H-free connected

graph of order at least n0 is claw-free. Let n = max(n0, 3).
Consider G = Zi,n. Since G contains an induced claw, G must contain some graph in

H as an induced subgraph. Since G contains neither K1,4, Pi+3 nor W 2
2 then Bj � G for

all j ∈ {1, 2, 3}. Furthermore, since Zj,3 � G for all 1 ≤ j ≤ i − 1, then Hj � G for all
1 ≤ j ≤ i− 1. Then there must be some other graph Hi ∈ H such that Hi � G.

Since Hi � K1,3, Hi � Yi+1 and that Hi � Z−i,r for all r ≥ 3, then Hi = Zi,ri for some

ri ≥ 3. Notice that if ri = 2, then it would contradict that Hi � Yi+1.
This concludes the inductive proof. We now prove that m ≥ k. Let i = k − 3. Let

r = max(r1, . . . , ri). Suppose that H ≤ {Yi+2}. Then H ≤ {K1,l, Yi+2,W
2
q , Z1,r, . . . , Zi,r},

and hence H ≤ HA
i (l, q, r) (with i = k−3), a contradiction. We conclude that H � {Yi+2} =

{Yk−1} and so B2 = Pm+1 or B2 = Ym for some m ≥ k.

Lemma 12. Let k ≥ 7 be an integer and let H ∈ H(3) with |H| ≤ k. Suppose that
H � {K1,3}, H /∈ FC

j for all 1 ≤ j ≤ k − 5 and H /∈ FD
j for all 3 ≤ j ≤ k − 5. Suppose also

that there are graphs B1, . . . , B5, H1, H2 ∈ H such that

• B1 = K1,l for some l ≥ 4.

• B2 = Pm+1 or B2 = Ym for some m ≥ 3.

• B3 = W 3
q1 for some q1 ≥ 2.

• B4 = Dq2 for some q2 ≥ 2.

• B5 = T−q3 or H5 = Tq3 for some q3 ≥ 1 and

• H1 = Z1,r1 for some r1 ≥ 3.

• H2 = Z2,r1 for some r2 ≥ 3.

Then there are graphs H3, . . . ,Hk−5 in H and integers r3, . . . , rk−5 such that for all 3 ≤ i ≤
k − 5, Hi = Zi,ri and ri ≥ 3. Additionally, m ≥ k − 2.
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Proof. The proof of this lemma is essentially the same as Lemma 11. The proof is by
induction on i.

Let 3 ≤ i ≤ k − 5 and suppose that there are graphs H1, . . . ,Hi−1 in H such that
Hj = Zj,rj for some rj ≥ 3 and all 1 ≤ j ≤ i−1. We will prove that there is a graph Hi ∈ H
such that Hi = Zi,ri for some ri ≥ 3.

Let r′ = max(r1, . . . , ri−1). Since H ≤ {K1,l,W
3
q1 , Dq2 , Tq3 , Z1,r′ , . . . , Zi−1,r′} and H /∈

FC
i−1, then H � {Yi+1}. In particular, B2 = Pm+1 or B2 = Ym for some m ≥ i+ 2.

Since H ≤ {K1,l, Ym,W
3
q1 , Dq2 , Tq3 , Z1,r′ , . . . , Zi−1,r′} and H /∈ FD

i , then H � {Z−i,r} for
all r ≥ 3.

Let n0 be as in Lemma 11. Let n = max(n0, 3). Consider G = Zi,n. Since G contains
neither K1,4, Pi+3, W 3

2 , D2, T−1 then Bj � G for all j ∈ {1, 2, 3, 4, 5}. Furthermore, since
Zj,3 � G for all 1 ≤ j ≤ i− 1, then Hj � G for all 1 ≤ j ≤ i− 1. Then there must be some
other graph Hi ∈ H such that Hi � G.

Since Hi � K1,3, Hi � Yi+1 and that Hi � Z−i,r for all r ≥ 3, then Hi = Zi,ri for some

ri ≥ 3. Notice that if ri = 2, then it would contradict that Hi � Yi+1.
This concludes the inductive proof.

We now prove that m ≥ k − 2. Let i = k − 5. Let r = max(r1, . . . , ri). Suppose that
H ≤ {Yi+2}. Then H ≤ {K1,l, Yi+2,W

3
q1 , Dq2 , Tq3 , Z1,r, . . . , Zi,r}, and hence H ≤ HC

i (l, q, r)
(with i = k−5), a contradiction. We conclude thatH � {Yi+2} = {Yk−3} and so B2 = Pm+1

or B2 = Ym for some m ≥ k − 2.

Proof of Theorem 9.
Suppose that H ∈ H(3) and |H| ≤ k. Contrary to the theorem, suppose that

• H /∈ Fi for all i ∈ {1, 3, 4, 5, 6} with i ≤ k,

• H /∈ FA
i for all 1 ≤ i ≤ k − 3,

• H /∈ FB
i for all 2 ≤ i ≤ k − 3,

• H /∈ FC
i for all 1 ≤ i ≤ k − 5 and

• H /∈ FD
i for all 3 ≤ i ≤ k − 5.

Since H ∈ H(3), there is a positive integer n0 = n0(H) such that every H-free connected
graph of order at least n0 is claw-free. Let n = max(n0, 3). We will consider several
connected graphs G of order at least n containing an induced claw. By the definition of
H(3), there will be some H ∈ H such that H � G.

Consider G = K1,n. Then there is a graph B1 ∈ H such that B1 � G. Since H /∈ F1,
then H � {K1,3}, and so B1 � K1,3. We conclude that

• B1 = K1,l for some l ≥ 4.

Consider G = Yn. Since G contains no K1,4, then B1 � G. Then k ≥ 2 and there is a
graph B2 ∈ H such that B2 � G. Since B2 � K1,3 then

• B2 = Pm+1 or B2 = Ym for some m ≥ 3.

Consider G = W 3
n . Since G contains neither K1,4 nor P4, then B1 � G and B2 � G.

Then k ≥ 3 and there is a graph B3 ∈ H such that B3 � G. Since H /∈ F3, then H � {Kr}
for all r ≥ 3. Since B3 � K1,3 and B3 � Kr for all r ≥ 3, then

• B3 = W 2
q1 or B3 = W 3

q1 for some q1 ≥ 2.

Consider G = Z1,n. Since G contains neither K1,4, P4 nor W 2
2 , then Bi � G for all

i ∈ {1, 2, 3}. Then k ≥ 4 and there is a graph H1 ∈ H such that H1 � G (the name H1

will be better understand later in the proof). Since H /∈ F4, then H � {Z−1,r} for all r ≥ 3.

Since H1 � K1,3 and H1 � Z−1,r for all r ≥ 3, then
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• H1 = Z1,r1 for some r1 ≥ 3.

Case 1 : H ≤ {W 2
q } for some q ≥ 2.

Since H ≤ {W 2
q } for some q ≥ 2 then there is a graph B′ in H such that B′ � W 2

q for
some q ≥ 2. Notice it may be that B′ = B3 or not. Since B′ � K1,3 and B′ � Kr for all
r ≥ 3, then B′ = W 2

q for some q ≥ 2.
By Lemma 11, there are graphs H2, . . . ,Hk−3 in H such that Hi = Zi,ri for some ri ≥ 3

and all 2 ≤ i ≤ k − 3. From the same lemma, we have that m ≥ k and so B2 = Pm+1 or
B2 = Ym for some m ≥ k. Notice that {B1, B2, B

′, H1, . . . ,Hk−3} ⊆ H. Since |H| ≤ k, then
B′ = B3 and H has no other graphs, namely, H = {B1, B2, B3, H1, . . . ,Hk−3}.

Consider G = Zk−2,n. Since G contains neither K1,4, Pk+1 nor W 2
2 then Bi � G for

all i ∈ {1, 2, 3}. Furthermore, since Zi,3 � G for all 1 ≤ i ≤ k − 3, then Hi � G for all
1 ≤ i ≤ k − 3. Then G contains no graph of H, which is a contradiction.

Case 2 : H � {W 2
q } for all q ≥ 2.

Since H � {W 2
q } for all q ≥ 2, then

• B3 = W 3
q1 for some q1 ≥ 2.

Consider G = Dn. Since G contains neither K1,4, P4, W 3
2 nor Z1,3, then Bi � G for all

i ∈ {1, 2, 3} and H1 � G. Then k ≥ 5 and there is a graph B4 ∈ H such that B4 � G. Since
B4 � K1,3, B4 � Kr for all r ≥ 3, B4 �W 2

q for all q ≥ 2 and B4 � Z−1,r for all r ≥ 3, then

• B4 = Dq2 for some q2 ≥ 2.

Since H /∈ F5, then H � {P4}. Then B2 = Pm for some m ≥ 5, or B2 = Ym for some
m ≥ 3.

Consider G = Tn. Since G contains neither K1,4, P5, Y3, W 3
2 , D2 nor Z1,3, then Bi � G

for all 1 ≤ i ≤ 4 and H1 � G. Then k ≥ 6 and there is a graph B5 ∈ H such that B5 � G.
Since H /∈ F6, then H � {Z−2,r} for all r ≥ 3. Since B5 � K1,3, B5 � W 2

q for all q ≥ 2, and

that B5 � Z−j,r for j ∈ {1, 2} and all r ≥ 3, then

• B5 = T−q3 or B5 = Tq3 for some q3 ≥ 1.

Suppose that H ≤ {Y3}.
Since H ≤ {K1,l, Y3,W

3
q1 , Dq2 , Tq3 , Z1,r1}, then H ≤ HC

1 (l,max(q1, q2, q3), r1), a contradic-
tion (since 1 ≤ k−5). Then we may suppose that H � {Y3} and so B2 = Pm+1 , or B2 = Ym
for some m ≥ 4.

Consider G = Z2,n. Since G contains neither K1,4, P5, W 3
2 , D2, T−1 nor Z1,3, then

Bi � G for all i ∈ {1, 2, 3, 4, 5} and H1 � G. Then k ≥ 7 and there is a graph H2 ∈ H such
that H2 � G. Since H2 � K1,3, H2 � Y3 and H2 � Z−j,r for j ∈ {1, 2} and all r ≥ 3, then

• H2 = Z2,r2 for some r2 ≥ 3.

By Lemma 12, there are graphs H1 . . . Hk−5 in H such that Hi = Zi,ri for some ri ≥ 3
and all 1 ≤ i ≤ k− 5. From the same lemma, we have that m ≥ k− 2 and so B2 = Pm+1 or
B2 = Ym for some m ≥ k − 2. Notice that {B1, . . . , B5, H1, . . . ,Hk−5} ⊆ H. Since |H| ≤ k,
then H has no other graphs, namely, H = {B1, . . . , B5, H1, . . . ,Hk−5}.

Consider G = Zk−4,n. Since G contains neither K1,4, Pk−1, W 3
2 , D2 nor T−1 then Bi � G

for all i ∈ {1, 2, 3, 4, 5}. Furthermore, since Zi,3 � G for all 1 ≤ i ≤ k − 5, then Hi � G for
all 1 ≤ i ≤ k − 5. Then G contains no graph of H, which is a contradiction.
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6 Applications

In this section we show an application of Theorem 3. In particular we show a family of
forbidden subgraphs implying a hamilton path in large enough connected graphs.

Let N be the graph obtained by adding a pendant vertex to each vertex of a triangle.
The graph N is often called “net”. Consider the following Theorem.

Theorem 13 ([9]). Let R and S be connected graphs. Then every {R,S}-free connected
graph has a hamiltonian path if and only if {R,S} ≤ {K1,3, N}.

Figure 2: The graph N

We use now Theorem 3 to prove a variation of Theorem 13. We remove the limit on
the number of forbidden subgraphs and replace it with the condition of the graph N being
among the forbidden subgraphs.

Theorem 14. Let H be a non-redundant family of connected graphs such that N ∈ H. Then
there is an integer n ≥ 1 such that every H-free connected graph G with |V (G)| ≥ n has a
hamiltonian path if and only if H ∈ F(3).

Proof. Let H ∈ F(3) with N ∈ H. By Theorem 3, we know that every H-free connected
graph G with large enough order is K1,3-free. Because N ∈ H, then by Theorem 13, every
H-free connected graph G with large enough order has a hamiltonian path.

Let H be a family of connected graphs with N ∈ H and such that there is an n0 with
the property that every connected H-free graph of order at least n0 has a hamiltonian path.
Let n ≥ max(n0, 4).

Consider the family H′ = H3(n, n, n, n). All graphs in H′ are connected and have order
at least n0. Moreover, none of them has a hamiltonian path. In the same way as in the
proof of Theorem 3, we conclude that H ∈ F(3).

Theorem 14 is actually a case of implicit forbiddance, that we discussed in Section 1.
Even though that, so far there was no result on forbidden subgraphs implying a hamilton
path with families of large or infinite size and with an “if and only if” condition. So, we
think the result is interesting by itself.

7 Conclusions

The characterization we were looking for is given by Theorem 3.
We have solved the problem of characterizing H(t) for any t ≥ 3, but it is also possible

to consider t = 1 and t = 2. It is not difficult to see that F(t) is also the solution for t = 1
and t = 2. In these cases, the corresponding families H1(m, l, q, r) and H2(m, l, q, r) after
removing redundant graphs are as follows.

• H1(m, l, q, r) = {K1,l,Kq, Pm}

• H2(m, l, q, r) = {K1,l,W
2
q , Y

2
m, Z

2
1,r, . . . , Z

2
m−2,r}
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The case t = 1 is an easy proposition that can also be found in [5, Proposition 9.4.1].
Theorem 9 characterizes the families of forbidden subgraphs for claw-free graphs when

restricting the size of the family. In the characterization there are four “irregular” families
(F3, F4, F5 and F6) before the four infinite “regular” series (FA

i , FB
i , FC

i and FD
i ). We call

them irregular because there is no easy way to see a pattern that describes them. They also
include graphs that are claw-free, which are the result of the intersection of graphs that are
not claw-free. These graphs become necessary because of the restriction in the size of the
family. After F6, the families “stabilize” and appear the four infinite series.

It is also possible to consider restricting the size of the families of forbidden subgraphs
for K1,t-free graphs for t ≥ 4. We think that a complete characterization of such families
may be difficult and very long. In particular, we think that there might be many “irregular”
families and many “regular” infinite series of families.

When searching for forbidden subgraphs implying some property P (G) on graphs, it
makes sense to study only forbidden subgraphs that imply P (G) on graphs that satisfy some
condition, usually related to the necessary conditions for satisfying P (G). For example, in
the case of graphs having a 2-factor, like in the Theorem 1, G should have minimum degree
at least 2 and maximum degree at least 3. Minimum degree at least 2 is a necessary condition
for having a 2-factor; maximum degree at least 3 is to avoid the trivial case a G being a
cycle. Another example is the case of hamiltonian graphs, which have a necessary condition
of being 2-connected, as studied for example in [11, 3].

Usual necessary conditions in the literature (hamilton cycle, hamilton-connected[2], 2-
factor) appear to be connectivity and minimum degree conditions. When studying properties
with such necessary conditions, Theorem 3 might not be useful to understand if a star is
being implicitly forbidden or not. To try to find generalizations of Theorem 3 that can also
be used in these cases, we propose the following two problems.

Problem 1. Let t ≥ 3 and k ≥ 1. Characterize all the families of connected graphs H
satisfying the following property. Every large enough H-free k-connected graph is K1,t-free.

In this paper we were able to resolve Problem 1 for the case k = 1.

Problem 2. Let t ≥ 3 and d ≥ 2. Characterize all the families of connected graphs H
satisfying the following property. Every H-free large enough connected graph with minimum
degree at least d is K1,t-free.

Even a combination of Problems 1 and 2 is possible.
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[6] R. Faudree, E. Flandrin, and Z. Ryjáček. Claw-free graphs – a survey. Discrete Math.,
164(1-3):87–147, 1997.

[7] R. Faudree, R. Gould, and M. Jacobson. Potential forbidden triples implying hamil-
tonicity: For sufficiently large graphs. Discuss. Math. Graph Theory, 25:273–289, 2005.

[8] R. Faudree, R. Gould, M. Jacobson, and L. Lesniak. Characterizing forbidden clawless
triples implying hamiltonian graphs. Discrete Math., 249(1-3):71–81, 2002.

[9] R. J. Faudree and R. J. Gould. Characterizing forbidden pairs for hamiltonian proper-
ties. Discrete Math., 173(1-3):45–60, 1997.

[10] S. Fujita, K. Kawarabayashi, C. L. Lucchesi, K. Ota, M. D. Plummer, and A. Saito.
A pair of forbidden subgraphs and perfect matchings. J. Combin. Theory, Ser. B,
96(3):315–324, 2006.

[11] R. J. Gould and J. M. Harris. Forbidden triples of subgraphs and traceability. Con-
gressus Numerantium, 108:183–192, 1995.

[12] R. J. Gould and J. M. Harris. Traceability in graphs with forbidden triples of subgraphs.
Discrete Math., 189(1-3):123–132, 1998.

[13] R. J. Gould and J. M. Harris. Forbidden triples and traceability: a characterization.
Discrete Math., 203(1-3):101–120, 1999.

14


