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Abstract

In this paper, we give a survey of spanning trees. We mainly deal with span-
ning trees having some particular properties concerning a hamiltonian proper-
ties, for example, spanning trees with bounded degree, with bounded number
of leaves, or with bounded number of branch vertices. Moreover we also study
spanning trees with some other properties, motivated from optimization aspects

or application for some problems.
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1 Introduction

In this paper, a graph implies a finite simple graph, which has neither loops nor
multiple edges. We give a survey of spanning trees. There are several problems
on spanning trees which are generalizations of the hamiltonian path problem. A
hamiltonian path of a graph is a path passing through all vertices of the graph. One
of the huge targets of this problem is to find a necessary and sufficient condition
for the existence of a hamiltonian path, except for a trivial one. However, it seems
difficult and no one have succeeded.

It is well-known that the problem of determining whether a given graph has a

hamiltonian path or not is N P-complete. For a graph G, by adding k — 2 pendant
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edges to each vertex of G, we obtain a new graph G*. Then it is clear that G* has a
spanning k-tree if and only if G has a hamiltonian path. Moreover, take one vertex v
of G, and add k — 2 pendant edges to v, and denote the resulting graph by G’. Then
G’ has a spanning tree with at most k leaves if and only if G has a hamiltonian path.
Hence the following two problems are N P-complete: (i) a problem of determining
whether a graph has a spanning k-tree or not and (ii) a problem of determining
whether a graph has a spanning tree with at most k leaves or not. Therefore, it is
widely believed that it is impossible to find a good necessary and sufficient condition
for a graph to have a spanning k-tree or to have a spanning tree with at most &
leaves. Thus we mainly deal with sufficient conditions for a graph to have such

spanning trees. We begin with two famous results on hamiltonian paths.

Theorem 1 (Ore [149]) Let G be a graph of order n. If 09(G) > n — 1, then G

has a hamiltonian path.

Theorem 2 (Chvatal and Erdés [44]) Let m > 1, and let G be an m-connected
graph. If «(G) < m+ 1, then G has a hamiltonian path.

In Section 2—4, we discuss these generalizations to spanning trees with some
properties concerning with hamiltonian paths.

A graph is hamiltonian-connected if every two vertices are connected by a hamil-
tonian path. A graph is k-leaf-connected if for all set S of k vertieces, there exists a
spannning tree whose leaf set is precisely equal to S. Since a 2-leaf-connected graph
is hamiltonian-connected, the concept of “k-leaf-connectedness” is a generalization

of that of “hamiltonian-connectedness”.

Theorem 3 (Ore [150]) Let G be a graph of order n > 3. If 03(G) > n + 1, then

G is hamiltonian-connected.

In Section 5, we show some generalizations of this theorem for k-leaf-connectedness.
In Section 6, we examine spanning trees studied from other motivation than hamil-
tonian properties. In Section 7, we research more than one spanning trees with some
properties. In many applications, spanning trees of a multigraph are considered,
however in this survey we mainly deal with spanning trees possesing the properties
concering hamiltonian properties, and so we consider only simple graphs.

For standard graph-theoretic terminology not explained in this paper, we refer
the reader to [178]. For a graph G and for a vertex v of G, the degree of v, denoted by
dg(v), is the number of neighbors of v in G. Let a(G) and 6(G) be the independence
number and the minimum degree of a graph G, respectively. If a(G) > k, let ox(G)
be the minimum degree sum of an independent set of k vertices of GG; otherwise we let
0k (G) = +00. We denote the number of components of G by w(G). For X C V(G),
the subgraph of G induced by X is denote by G[X]. A graph is said to be K ;-free

if it contains no Ki; as an induced subgraph.



2 Spanning trees with bouded degree

In this section we consider spanning trees with bounded degree. For an integer k > 2,
a k-tree is a tree with the maximum degree at most k. This topic mainly concerns
with a connected factor, in particular, a connected [1, k|-factor. A [1, k]-factor is a
spanning subgraph in which each vertex has the degree at least one and at most k. By
the definition, a graph G has a spanning k-tree if and only if G has a connected [1, k|-
factor. Because of this fact, the survey [122] on connected factors partly contains
a topic on a spanning k-tree and a spanning f-tree. See also the survey [161] on a
factor. This section is divided into three subsections, depending on the conditions,
that is, toughness type condition, planarity condition, and independence number,

connectivity and degree condition.

2.1 Toughness type condition

We first consider a necessary condition for a graph to have a hamiltonian cycle.

Proposition 4 Let G be a graph having a hamiltonian cycle. Then for all S C
V(G), w(G - S) < |S].

However the converse does not hold. Therefore Chvatal [42] introduced the
concept of toughness. A graph G is t-tough if w(G — S) < 1 -|S| for all S C V(G)
with w(G — S) > 2, where t is a positive real number. The toughness of a graph
G, denoted by 7(G), is the maximum value of ¢ for which G is t-tough if G is not a
complete graph; otherwise let 7(G) := +o00. Proposition 4 states that every graph
having a hamiltonian cycle has the toughness at least one. Although the condition
“the toughness at least one” cannot guarantee the existence of a hamiltonian cycle,
higher toughness may be able to guarantee. Motivated by this fact, Chvatal [42]
conjectured that there exists a finite constant ¢y such that every tg-tough graph has
a hamiltonian cycle. This conjecture is still open even for a hamiltonian path, but
Bauer, Broersma and Veldman [13] showed that ¢, > § if such a constant ¢, exists.
We refer for readers the survey on toughness and cycles [12].

We consider toughness type conditions for the existence of a spanning k-tree.
The following proposition gives a necessary condition for a graph to have a spanning

k-tree.

Proposition 5 Let k > 2 and let G be a graph having a spanning k-tree. Then for
all S CV(G), w(G—195) < (k—1)|S|+1 and the equality holds if S is an independent

set.

Proof. Let T be a spanning k-tree of G. We show that w(T'—S) < (k—1)|S| +1
by induction on |S|. When |S| = 0, there is nothing to prove. So we may assume
that |S| > 1.



Take v € S and let S’ := S — {v}. By induction hypothesis, w(T — S’)
(k—1)|S’| + 1. Let C be a component of T'— S’ containing v. Note that d¢(v)
dr(v) < k. (When v is adjacent with no vertex of S’ in T, then dc¢(v) = dr(v).)

Since the deletion of v divides C' into d¢(v) components, we obtain

<
<

w(T—-8) = wT-5)—1+dc(v)
(k=18 +1-1+k
(k—1)|S|+1.

IN

Hence we have w(T'—S) < (k—1)|S|+1. This implies that w(G—S5) < w(T—-95) <
(k=1|S|+1. O

We call such a condition (containing a constant term) a toughness type condition.
In [182], Win first considered a toughness type condition. Ellingham and Zha [66]

gave a short proof to this theorem.

Theorem 6 (Win [182]) Let k > 2 and let G be a connected graph. If w(G—1S5) <
(k—2)|S| +2 for all S C V(G), then G has a spanning k-tree.

Although we cannot increase the coefficient (k — 2) in Theorem 6 to larger than
or equal to (k—1) by Proposition 5, we do not know whether the coefficient (k—2) is
best possible. Theorem 6 implies that every ﬁ—tough graph has a spanning k-tree
for k > 3. If we succeed to increase the coefficient (k—2) in Theorem 6 to (k—2+¢)
for some constant € > 0, then we obtain that every %-tough graph has a spanning
2-tree.

As one of generalizations of Theorem 6, Ellingahm, Nam and Voss [65] gave a
sufficient condition for the existence of a spanning f-tree. Let G be a connected
graph and let f be a mapping from V(G) to positive integers. Then a tree T of G
is called f-tree if dp(z) < f(x) for all x € V(T'). Note that when f takes a constant
value k for every vertex, then an f-tree is equivalent to a k-tree, and hence f-tree is

an extension of a concept of a k-tree.

Theorem 7 (Ellingham, Nam and Voss [65]) Let G be a connected graph and
let f be a positive integer-valued function on V(G). If w(G—-S) < co(f(v)—2)+2
for all S C V(G), then G has a spanning f-tree.

Also Ellingahm et al. showed their result on toughness type condition implies some

corollaries. One of them has been already shown by Zhenhong and Baoguang.

Theorem 8 (Zhenhong and Baoguang [193]) Every m-edge-connected graph G
has a spanning tree T' such that dp(v) < [dc—(v)} + 2 for allv € V(Q).

m

Enomoto, Ohnishi and Ota [68] gave another generalization of Theorem 6 in
terms of total excess te(T', k), defined by te(T,k) = >_ ¢y () max{dr(z) — k,0} for



a spanning tree T' of a connected graph G. Later, Ohnishi and Ota [148] obtained
a common generalization of them. For a spanning tree T' of a connected graph G,
and for a mapping f from V(G) to positive integers, the total f-excess te(T, f) is
defined by te(T', f) = >,y () max{0,dr(v) — f(v)}. Recently, Ozeki [152] obtained

a further extension of this result.

Theorem 9 (Ohnishi and Ota [148]) Let G be a connected graph and let f be
a positive integer-valued function on V(G), and let t be an integer. If w(G — S) <
Y owes(f(v) =2) + 2+t for all S C V(G), then G has a spanning tree T with
te(T, f) < t.

On the other hand, the similar proof of Proposition 5 implies a necessary condi-
tion for the existence of a spanning f-tree: if a graph G has a spanning f-tree, then
w(G—=58) <Y ,es(f(x)—1) 41 for all S C V(G). Frank and Gyéfds [82] showed
that this necessary condition is also sufficient when f(x) = +oc for allz € V(G)— X,
where X is a specified independent set of G.

2.2 Spanning k-trees of graphs on surface

In this section, we consider spanning trees of graphs on surfaces. We also refer for
the readers to the good survey [63].

Toughness type condition is useful in “Topological Graph Theory”, since a graph
on a surface has bounded toughness depending on the connectivity and the genus
of the surface. For example, by using Theorem 6, Ellingham showed the following
result. For a surface X, Fuler characteristic x is defined by y = 2 — 2¢ if ¥ is an
orientable surface of genus g, and by y = 2 — ¢ if ¥ is a nonorientable surface of

genus g.

Theorem 10 (Ellingham [63]) Let m > 3 be an integer and let G be an m-
connected graph on a surface of Euler characteristic x < 0. Then G has a spanning
[2 + 472’%1—tree.

m2—2

4—2x
m2—2m

However, the value [2+ | of Theorem 10 might not be tight, since Theorem
10 is proven by using Theorem 6 and we do not know that whether the toughness
type condition of Theorem 6 is best possible for graphs with high connectivity. In
fact, for the case m = 3 and x < —36, Sanders and Zhao [168] obtained the best
value of k without using Theorem 6; every 3-connected graph on a surface of Euler
characteristic x < —36 has a spanning {%]—tree. Note that the complete bipartite
graph K36 2, can be embedded in a closed surface of Euler characteristic x and
attains this upper bound of the maximum degree of a spanning tree. Recently, Ota
and Ozeki [151] improved the upper bound on y to x < 0.

Now we focus on a spanning 3-tree or 4-tree. For a graph G embedded on a

closed surface F? which is not the plane, the representativity of G is the minimum



number of intersecting points of G and -y, where v ranges over all essential closed

curves of F2. Barnette [10] showed the following result on a spanning 3-tree.

Theorem 11 (Barnette [10]) Every 3-connected planar graph has a spanning 3-

tree.

This result was extended to graphs on some surfaces having nonnegative Euler
characteristic by Barnette [11]; every 3-connected graph on the projective plane, the
torus, or the Klein bottle has a spanning 3-tree. Nakamoto, Oda and Ota [145] gave
upper bounds of the number of vertices with degree 3 of the 3-tree; the upper bounds
are ”7_7 and ”T_?’ for a graph of order n on the plane or the projective plane, and
on the torus or the Klein bottle, respectively. These upper bounds are best possible
except for the plane case.

Next, we consider a graph on a surface of negative Euler characteristic with large
representativity. Thomassen [174] showed that every triangulation of an orientable
surface with large representativity has a spanning 4-tree. Moreover, he pointed
out that there exists a triangulation of an orientable surface with arbitrary large
representativity having no spanning 3-tree. Later, Yu [188] improved this result to

general 3-connected graphs on a surface.

Theorem 12 (Yu [188]) Every 3-conneted graph of an orientable surface with

large representativity has a spanning 4-tree.

Kawarabayashi, Nakamoto and Ota [117] extended this result and proved that
every 3-connected graph on a surface of Euler characteristic y < 1 with large repre-
sentativity has a spanning 4-tree 7" with at most —2x — 1 vertices of degree 4, that
is, te(7,3) < —2x —1. Ozeki [153] showed that every 3-connected graph on a surface
of Euler characteristic x < 0 has a spanning {%W-tree T with te(T,3) < —2x — 1
without the assumption of representativity.

As an analogue of Thomassen’s result, Ellingham and Gao [64] showed that every
4-connected triangulation of an orientable surface with large representativity has a

spanning 3-tree. Yu [188] improved this result as follows.

Theorem 13 (Yu [188]) Every 4-connected graph on a surface with large repre-

sentativity has a spanning 3-tree.

Note that Archedeacon, Hartsfield and Little [5] constructed a k-connected tri-
angulation of an orientable surface with representativity at least k& which has no
spanning (k — 1)-tree. Therefore, we need the condition “large representativity”. On
the other hand, similarly as the case of spanning 4-trees in 3-connected graphs on

surfaces, the following conjecture was posed;

Conjecture 14 For each integer x < 0, there exists a constant ¢ such that every

4-connected graph on a surface of FEuler characteristic x with large representativity



has a spanning 3-tree with at most ¢ vertices of degree 3.

We can also consider other extensions of planar graphs. Note that every 3-
connected planar graph has no K3 3-minor. In this sense, Chen, Egawa, Kawarabayashi,
Mohar and Ota [35] showed the existence of a spanning (¢ + 1)-tree in a 3-connected
graph which has no K3;-minor for ¢ > 3. Recently, Ota and Ozeki improved their
result as follows. Note that Chen et al. [35] also showed that the bound “t — 1" of

the maximum degree of a spanning tree is best possible.

Theorem 15 (Ota and Ozeki [151]) Let t > 4 be an even integer. Let G be a

3-connected graph with no K3 ;-minor. Then G has a spanning (t — 1)-tree.

2.3 Independence number, connectivity and degree condition

Neumann-Lara and Rivera-Campo obtained an independence number and connec-
tivity condition for a spanning k-tree. This result is a generalization of Theorem
2.

Theorem 16 (Neumann-Lara and Rivera-Campo [147]) Let m > 1 and k >
2. Let G be an m-connected graph. If a(G) < m(k — 1)+ 1, then G has a spanning

k-tree.

In fact, they proved the following statement involving total excess. The case

k = 3 was obtained by Tsugaki using different method.

Theorem 17 (Neumann-Lara and Rivera-Campo [147], Tusgaki [175]) Let
m>1and k >3 and 0 < ¢ < m. Let G be an m-connected graph. If a(G) <
m(k —2) +c+ 1, then G has a spanning k-tree T' with te(T, k) < c.

Rivera-Campo [165] obtained an independence number and connectivity condi-
tion for a spanning k-tree containing a given matching.
On the other hand, Several authors gave degree sum conditions for a spanning

k-tree. Win obtained a generalization of Theorem 1.

Theorem 18 (Win [180]) Let & > 2 and let G be a connected graph of order n.
If o, > n — 1, then G has a spanning k-tree.

Czygrinow, Fan, Hurlbert, Kierstead and Trotter [52] showed the same condition
as Theorem 18 implies that (i) the graph has a spanning k-tree which is a caterpillar
or (ii) G belongs a single exceptional class. Note that a caterpillar is a tree containing
a path such that all other vertices have degree one.

Rivera-Campo [164] gave a result on degree sum condition, which implies Theo-
rem 17 but does not imply Theorem 18. Fujisawa, Matsumura and Yamashita im-

proved the result and obtained a common generalization of Theorem 17 and Theorem



18. For C V(G) with |S| > t, let Ay(S) = max{}_ crda(v)|T C S,|T|=t}. We de-
fine of(G) := min{Ag(S5)| S is an independent set of G with |S| = s} if a(G) > s;

otherwise o} (G) := +o0.

Theorem 19 (Fujisawa et al. [84]) Let m > 1, k > 3, ¢ > 0 and G be an m-
connected graph of order n. If a,:n(k_l)+c+2(G) >n—c—1, then G has a spanning

tree T with maximum degree at most k + [¢/m]| and te(T, k) < c.

Caro, Krasikov and Roditty [29] introduced a k-frame, and they gave a degree
condition using k-frame for a graph to have a spanning k-tree. A independent set
S of order k is a k-frame if G — S’ is connected for all S" C S. Kyaw [125] gave
a neighborhood union condition using k-frame. This result improves results due
to Caro et al. and Aung and Kyaw [7], and also is a generalization of a result of
Flandrin, Jung and Li [80] for a hamiltonian path.

On the other hand, Matsuda and Matsumura gave an independence number
condition for the existence of a spanning k-tree such that the set of the leaves contains

some specified vertices.

Theorem 20 (Matsuda and Matsumura [139]) Let k,s and m integers with
k>20<s<kandm > s+ 1. Let G be an m-connected graph. Suppose that
a(G) < (m—s)(k—1)+1. Then for every S C V(G) with |S| = s, G has a spanning
k-tree T such that S C L(T).

However, such a spanning k-tree corresponds to a spanning f-tree with f(z) =
1 for specified vertices x and f(x) = k for other vertices. Considering this fact,
Enomoto and Ozeki posed the following conjecture for the existence of a spanning
f-tree.

Conjecture 21 (Enomoto and Ozeki [69]) Let m > 1 and let G be an m-connected
graph and f be a mapping from V(G) to positive integers. If erV(G)f(x) >
2(|V(G)| = 1) and o(G) < min{} . p(f(z) = 1) : R C V(G),|R| = m} + 1, then

there exists a spanning f-tree.

The condition “}_ v f(z) = 2(|V(G)| —1)” is a trivial necessary condition
for the existence of a spanning f-tree. The independence number condition in Con-
jecture 21 is sharp if it is true. Enomoto and Ozeki [69] showed that Conjecture 21
holds when s1(f) + s2(f) < m + 1, where s;,(f) := |{z € V(G) : f(z) = i}|. Note
that this result is an improvement of Corollary 16 and Theorem 20.

Matsuda and Matsumura [139] also gave a degree sum condition for the existence
of a spanning k-tree the set of whose leaves contains some specified vertices. By the

same consideration as above, Enomoto posed the following problem.

Problem 22 (Enomoto [67]) Find a sharp degree sum condition, together with

some other conditions, for the existence of a spanning f-tree.



Note again that for the existence of a spanning f-tree, we know that the condition
“Dwev(e) f(@) 2 2([V(G)| —1)” is necessary. Moreover, some conditions on cut set
may also be needed.

Here using a new notation Cut(G; f) instead of the connectivity, we introduce
a partial solution of Problem 22. Let G be a connected graph and f be a mapping
from V(G) to positive integers. We define the connectivity with respect to f as

follows; if GG is not a complete graph,

Cut(G; f) := min{z (f(v) — 1) : S is a cut set of G},
vES

otherwise let Cut(G; f) = 0. Using Cut(G; f), some results on a spanning k-tree or
a spanning f-tree mentioned above can be improved. In particular, if we restrict
ourselves to the case where f(v) > 3 for all v € V(G), the similar proofs directly
imply results on a spanning f-tree. For example, a connected graph G has a spanning
f-tree if f(v) > 3 for any v € V(G) and if a(G) < Cut(G; f)+1. This can be proven
by the same method as the proof of Theorem 17, and this is an extension of the one
due to Enomoto and Ozeki [69]. Also, Theorem 19 can be improved; a connected
graph G has a spanning f-tree if f(v) > 3 for any v € V(G), and if 0} (G) > |G| -1,
where r = Cut(G; f) + 2 and k = min{f(v) : v € V(G)}.

However, the difficulty of Problem 22 is based on the existence of vertices v with
f(v) =1 or 2. In this sense, Problem 22 remains open for the general case, and this
might be interesting.

At the end of this section, we consider a closure operation of Bondy-Chvatal type.
Kano and Kishimoto [115] showed the following result; let G be an m-connected
graph and let u and v be two non-adjacent vertices of G. Suppose that dg(u) +
dg(v) > |G| — m(k —2) — 1. Then G has a spanning k-tree if and only if G + uv
has a spanning k-tree. In addition, they also showed that the degree sum condition
“dg(u) + dg(v) > |G| — m(k — 2) — 1”7 is best possible. Note that this theorem
is an extension of the result on a closure for the hamiltonicity [18]. We point out
that this theorem can be also improved for a spanning f-tree; let G be a connected
graph, let f be a mapping from V(G) to positive integers, and let v and v be two
non-adjacent vertices of G. Suppose that dg(u)+dg(v) > |G|—Cut/(G; f) —1, where
Cut/(G; f) ==min { >, cq (f(z) —2) : S is a cut set of G}. Then G has a spanning
f-tree if and only if G 4 uv has a spanning f-tree.

3 Spanning k-ended tree

A tree with at most k leaves is called a k-ended tree. Win [181] obtained a gen-
eralization of Theorem 2, which was conjectured by Las Vergnas. Broersma and

Tuinstra [26] gave a generalization of Theorem 1.



Theorem 23 (Win [181]) Let £ > 2 and let G be an m-connected graph. If
a(G) <m+k —1, then G has a spanning k-ended tree.

Theorem 24 (Broersma and Tuinstra [26]) Let k > 2 and let G be a connected
graph of order n > 2. If 05(G) > n — k + 1, then G has a spanning k-ended tree.

Tsugaki and Yamashita obtained a common generalization of these theorem in terms

S
of o}.

Theorem 25 (Tsugaki and Yamashita [176]) Let m > 1 and k > 2, and let G
be an m-connected graph of order n. If 03" ™(G) > n—k+1, then G has a spanning
k-ended tree.

On the other hand, Flandrin, Kaiser, Kuzel, Li and Ryjacek [81] obtained a
neighborhood union condition for spanning k-ended trees. This is a generalization
of a result due to Bauer, Fan and Veldman [14]. We denote by N;(G) the minimum

order of the neighborhoods of an independent set of order k.

Theorem 26 (Flandrin et al. [81]) Let k > 2 and let G be a connected graph of
order n. If Ni(G) > kiﬂ(n — k), then G has a spanning k-ended tree.

Here we also consider a closure operation of Bondy-Chvatal type for a spanning
k-ended tree. Broersma and Tuinstra [26] showed that for a pair of two vertices u
and v in a graph G of order n with dg(u)+dg(v) > n—1, G has a spanning k-ended
tree if and only if G 4+ uv has a spanning k-ended tree. Although they also showed
that the degree condition “dg(u) + dg(v) > n — 17 is best possible, Fujisawa, Saito
and Schiermeyer [85] improved this result defining the notation of “the distant area”.

We now consider claw-free graphs and K 4-free graphs. A K 3-free graph is
called claw-free. Matthews and Sumner [141] obtained a degree sum condition for
a claw-free graph to have a hamiltonian path. Kano, Kyaw, Matsuda, Ozeki, Saito

and Yamashita obtained a slightly stronger result than a generalization of it.

Theorem 27 (Kano et al. [116]) Let k > 2 and let G be a connected claw-free
graph of order n. If o341(G) > n — k, then G has a spanning k-ended 3-tree.

Recently, Kyaw showed a result for K 4-free graphs:

Theorem 28 (Kyaw [127]) Let G be a connected K 4-free graph of order n. (i)
If 03(G) > n, then G has a hamiltonian path. (i) If o311(G) > n—k/2 (k > 3),
then G has a spanning k-ended tree.

Lastly we introduce some results from point of view of optimization. The problem
of finding a spanning tree with smallest number of leaves, called MinLst (Minimum

Leaf Spanning Tree), is N P-hard because it is an generalization of the hamiltonian

10



path problem. Lu and Ravi [137] showed that there is no constant factor approxima-
tion algorithm for it, unless P = N P. Therefore Salamon and Wiener [167] consid-
ered the equivalent problem, the problem of finding a spanning tree with maximum
number of non-leaf vertices, called MaxIST (Maximum Internal Spanning Tree), and
they gave a 2-approximation algorithm for MaxIST, that is, an algorithm to find a
spanning tree such that its number of non-leaf vertices is at least half of the number
of non-leaf vertices of a spanning tree with maximum non-leaf vertices. Salamon
[166] improved it to 7/4-approximation. Salamon and Wiener [167] also gave a 3/2-

and a 6/5-approximation for claw-free graphs and cubic graphs, respectively.

4 Spanning trees with few branch vertices

We present results on trees with few branch vertices. A branch vertex of a graph is
a vertex of degree greater than two. One of the interest in the existence of spanning
trees with bounded branch vertices arises in the realm of multicasting in optical
networks; see [88, 89, 90].

Gargano, Hammar, Hell, Stacho and Vaccaro posed the following conjecture, and

proved the case k = 1.

Conjecture 29 (Gargano et al. [89]) Let k be a non-negative integer. Let G be
a connected graph of order n. If o 12(G) > n — 1, then G has a spanning tree with

at most k branch vertices.

This degree sum condition seems to be not best possible if it is true. Hence, we
propose a conjecture involving a sharp degree sum condition. Flandrin et al. [81]

also pointed out that o42(G) may be replaced with oy43(G).

Conjecture 30 Let k be a positive integer and let G be a connected graph of order

n. If ox4+3(G) > n — k, then G has a spanning tree with at most k branch vertices.

Also, in [89], Gargano et al. obtained degree sum conditions for claw-free graphs
and K 4-free graphs to have a spanning tree with at most k branch vertices. These
degree sum conditions seem to be strong. In fact, these results are implied from
Theorem 27 and Theorem 28. Matsuda, Ozeki and Yamashita [140] proved that a
connected claw-free graph GG has a spanning tree with at most & branch vertices if
a(G) < 2k + 2. They also showed that the condition is best possible. This result
suggests that we should consider a o943 condition for a spanning tree with at most k
branch vertices. In the same paper, they made the following conjecture, and showed
that the case k = 1 of this conjecture holds.

Conjecture 31 (Matsuda et al. [140]) Let G be a connected claw-free graph of
order n. If o95+3(G) > n—2, then then G has a spanning tree with at most k branch

vertices.
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A spider is a tree with at most one branch vertex. A branch vertex of a spider is
called the center of the spider. If a spider is a path, then every vertex can be viewed
as the center. Gargano and Hammer [88] gave degree conditions for a bipartite graph
to have a spanning spider or a spanning spider with prescribed center. Flandrin et

al. [81] obtained degree sum conditions for a spanning spider with prescribed center.

5 k-leaf connected graphs

A graph G is said to be k-leaf-connected if |V (G)| > k and for each subset S of V(G)
with |S| = k, G has a spanning tree 7" with L(T) = S, where L(T') is the set of
leaves of T'. Recall that the concept of “k-leaf-connectedness” is a generalization of
that of “hamiltonian-connectedness”, since a 2-leaf-connected graph is hamiltonian-
connected. Gurgel and Wakabayashi [96] gave an Ore-type condition for a graph
to be k-leaf-connected; for a graph G of order n, if 09(G) > n + k — 1, then G is
k-leaf-connected. This result is derived from the assertion that the property of being
k-leaf-connected is stable under a closure operation of Bondy-Chvétal type. Later,

Egawa, Matsuda, Yamashita and Yoshimoto improved this result as follows.

Theorem 32 (Egawa et al. [59]) Let k > 2 be an integer. Let G be a (k + 1)-
connected graph of order n. If 0o(G) > n+ 1, then G is k-leaf-connected.

Since the condition “op > |V(G)| + k — 1”7 implies that the connectivity is at
least k£ + 1, Theorem 32 is actually an improvement of the result due to Gurgel and
Wakabayashi.

The above results concern degree sum conditions, and there is no result on in-
dependence number and connectivity condition. Motivated by this fact, it may be
interesting to consider a generalization of the following theorem for the direction of

k-leaf-connectedness.

Theorem 33 (Chvatal and ErdSs [44]) Let G be an m-connected graph. If

a(G) <m —1, then G is hamiltonian-connected.

6 Other properties

In this section, we discuss spanning trees with some properties which are not gener-
alizations of a hamiltonian path. However, we study such spanning trees from other

aspects, in particular, optimization.

6.1 Spanning tree with many leaves

In 1981, Storer announced (without proof) that every connected cubic graph with
n vertices has a spanning tree with at least %n + 2 leaves. Linial conjectured that

every connected graph with n vertices and with minimum degree k£ has a spanning

12



tree with at least i—jn + ¢k leaves, where c¢i is a constant depending only on k.
Caro, West and Yuster [30] pointed out that Alon’s result disproves this conjecture
for sufficiently large k. Alon [1] (See also [4]) proved by probabilistic method that

for large n there exists a graph with the minimum degree at least & and with no

1+1n(k+1)
E+1

V(QG) is a dominating set if every vertex of G is in S or is adjacent to a vertex in

dominating set of size less than (1 + o(1)) n. For a graph G, a subset S of
S, and moreover if G[S] is connected then S is a connected dominating set. Note
that a vertex subset is a connected dominating set if and only if its complement is
contained in the set of leaves of some spanning tree. Therefore there exists a graph
with the minimum degree at least £ and with no spanning tree having more than
(1+ o(l))%n leaves. However, for small values of k, it is known that Linial’s
conjecture is true. Linial and Sturtevant (Unpublished) and Kleitman and West
[121], independently, proved it for k = 3 with c3 = 2. Griggs and Wu [93] proved
Linial’s conjecture for k = 4,5 with ¢4 = % and c; = 2. The best bounds for fixed &
greater than five remain open.

We consider graphs with certain forbidden induced subgraphs. Griggs, Kleitman
and Shastri [92] showed that every connected cubic graph with n vertices that con-
tains no induced diamond has a spanning tree with at least %n + % leaves, where
a diamond is the graph K, minus one edge. Bonsma [19], by defining a cubic di-
amond, showed every connected graph with n vertices with § > 3 that contains
no cubic diamond has a spanning tree with at least %n + 1—72 leaves. Furthermore,
Bonsma [19] proved that every connected triangle-free graph with n vertices with
0 > 3 has a spanning tree with at least %n + % leaves. Bonsma and Zickfeld [20]
defined a 2-necklace and a 2-blossom, and proved that every connected graph with
n vertices with § > 3 without 2-necklaces or 2-blossoms has a spanning tree with at
least %n + % leaves.

We consider the number of edges for a spanning tree with many leaves. For any
integer n > t > 2, Ding, Johnson and Seymour [58] determined the smallest f(n,t)
such that every connected graph with n vertices and at least f(n,t) edges must have
a spanning tree with more than ¢ leaves.

Now we show some results on spanning trees with many leaves from the aspect
of optimization. The problem of finding a spanning tree with maximum leaves in
a given graph is known as N P-hard [87], even for cubic graphs [129]. Thus, some
approximation algorithms for this problem have been considered. Lu and Ravi [138]
gave a 3-approximation algorithm, that is, an algorithm to find a spanning tree such
that the number of leaves of it is at least one third of that of the spanning tree with
maximum leaves. Later, Solis-Oba [171] improved this and gave a 2-approximation
algorithm. Approximation algorithms for cubic graphs are known [21, 45, 136].

This problem for the bipartite graph version has been also considered. Precisely,
some researches are studying the problem of finding a spanning tree of a given

bipartite graph with one partite set X such that the number of leaves contained
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in X is maximum. This problem was first posed by Rahman and Kaykobad [163],
and Li and Toulpise [133] showed that the problem of finding it is N P-hard. Later
Fusco and Monti [86] gave an approximation algorithm for regular bipartite graphs.
They also showed that for a cubic bipartite graph G with one partite set X, G has
a spanning tree with at least %' + 1 leaves contained in X.

Alon, Fomin, Gutin, Krivelevich and Saurabh [2, ?] considered a directed version

of this problem.

6.2 Locally connected spanning trees

A spanning tree T of a connected graph G is called locally connected spanning tree
if for any vertex v € V(G), the neighborhood of v in T' is connected in G, that is,
G[Nr(v)] is connected. This notion was first introduced by Cai in [27].

In [28], it is shown that the problem of determining whether a given graph con-
tains a locally connected spanning tree is NP-complete, even if we restrict ourselves
to planar graphs or split graphs. A graph G is called a split graph if there exists a
partition V U I of V(G) such that V is a clique and I is an independent set. Since
split graph is also chordal graph, locally spanning tree problem is NP-complete even
for chordal graphs. A graph is chordal graph if every cycle of length at least four
has a chord. However, Lin, Chang and Chen [134] gave a linear-time algorithm
for finding a locally connected spanning tree in strongly chordal graphs. A chordal
graph G is strongly if G has no induced subgraph H which has a hamiltonian cycle
T1Y1T2Y2 - - - Tnypr1 (n > 3) such that dy(z;) = 2.

6.3 Degree-preserving spanning trees

In [130], Lewinter introduced a notion “degree-preserving”. For a connected graph
G and a spanning tree T of G, a vertex v € V(G) is called degree-preserving in T if
dr(v) = dg(v). Lewinter [130] showed that if G has spanning trees with exactly k
and [ degree-preserving vertices, respectively, then G also has a spanning tree with
exactly p degree-preserving vertices for each p, I < p < k. (This result was proven
using the adjacency tree graph, see Section 7.4.) Choi and Guan [41] determined the
maximum number of degree-preserving vertices in a spanning tree of a hypercube.
Broersma, Koppius, Tuinstra, Huck, Kloks, Kratsch and Miiller [24] defined
degree-preserving spanning tree of a graph G by the meaning a spanning tree of G
such that as many vertices of T' as possible is degree-preserving. They also showed
that the problem of finding a degree preserving spanning tree of a given graph is
NP-hard even when restricted to split graphs or bipartite planar graphs with max-
imum degree at most 6. Damaschke [56] showed that the problem is also NP-hard
even if we deduce the maximum degree to 5 for bipartite planar graphs and to 3 for

general planar graphs.
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6.4 Average distance

For a connected graph G of order n, we define the average distance u(G) of G,

2
[70, 160]. In this subsection, we consider spanning trees with small average distance.

as u(G) = (")_1 > zyev(c) dista(z,y). We refer surveys for the average distance

Johnson, Lenstra and Rinnooy-Kan [109] proved that the problem of finding a
spanning tree of a given graph with minimum average distance among all spanning
trees is NP-hard. Several researchers have considered approximation algorithms for
finding it [183, 184, 185] and Fischetti, Lancia and Serafinl [79] gave exact algorithms.
On the other hand, when we restrict ourselves to some particular classes, it is known
that we can find a minimum average distance spanning tree in polynomial-time, for
example, distance-hereditary graphs by Dahlhaus, Dankelmann, Goddard and Swart
[53], and interval graphs by Dahlhaus, Dankelmann and Ravi [54].

We consider the upper bound of (7)) of spanning trees T in G. Entringer,
Kleitman and Szekely [71] showed that a connected graph G has a spanning tree T'
with (7)) < 2u(G). Dankelmann and Entringer [55] showed that a connected graph
G has a spanning tree T with u(T) < |[V(G)|/(6(G) + 1) + 5.

6.5 Leaf degree and leaf distance

In [111], Kaneko posed two new concepts concerning a spanning tree, called leaf
degree and leaf distance. Let G be a connected graph and let T be its spanning tree.
For a vertex v of V(G), the leaf degree of v in T is defined as the number of leaves
of T' adjacent to v. Kaneko gave a necessary and sufficient condition for a graph to
have a spanning tree with bounded leaf degree. We denote by i(G) the number of

isolated vertices of a graph G.

Theorem 34 (Kaneko [111]) Let G be a connected graph and let m be a positive
integer. Then G has a spanning tree with maximum leaf degree at most m if and
only if i(G — S) < (m + 1)|S] for every nonempty subset S C V(G).

Recently, Szabé [172] improved Theorem 34 and showed a result on the order of
a largest tree with bounded leaf degree.
For a tree T', the leaf distance of T is defined the minimum distances in T between

any two leaves of T'. Kaneko proposed the following conjecture.

Conjecture 35 (Kaneko [111]) Let d be an integer with d > 3 and let G be a

2|5]

connected graph of order at least d+1. If i(G—S) < 1—9
S C V(G), then G has a spanning tree with leaf distance at least d.

for any nonempty subset

Note that a tree with leaf distance at least 3 is equivalent to a tree with maximum
leaf degree at most 1. Therefore the case d = 3 of Conjecture 35 is obtained from
the case m = 1 of Theorem 34. Recently, Kaneko, Kano and Suzuki [112] solved the
case d = 4. The case d > 5 is still open.
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6.6 Spanning trees with high degrees

Let G be a connected graph and let X be a subset of V(G). Let g be a mapping
from X to the set of integers. In this subsection, we focus on the existence of a
spanning tree 7" in G such that dp(z) > g(z) for all x € X. Note that we obtain the
following necessary condition for the existence of such a spanning tree. For a graph
G and S C V(G), let wg(S) be the number of conponents of G[S].

Proposition 36 Let G be a connected graph, let X C V(G) and let g be a mapping
from X to the set of integers. If there exists a spanning tree T in G such that

dr(xz) > g(x) for any x € X, then for any nonempty subset S C X,

U Nata) — S| — g(S) +2IS] — wa(S) > 1
zeS
Frank and Gyérfas [82], and independently, Kaneko and Yoshimoto [114] proved
that this necessary condition is also sufficient when X is an independent set. Later,

Egawa and Ozeki extended this result as follows:

Theorem 37 (Egawa and Ozeki [60]) Let G be a connected graph and let X C
V(G), and let g be a mapping from X to the set of integers. Suppose that G[X]
has no induced path of order four. Then there exists a spanning tree T' such that

dr(z) > g(x) for any x € X if and only if for any nonempty subset S C X,

| U Ne(a) = S| = g(5) +2/5| —wa(s) > 1.
zes
Note that when G[X] has an induced path of order four, there exist infinitely
many graphs satisfying the necessary condition but having no desired spanning tree.
In this sense, the condition “G[X] has no induced path of order four” cannot be

weakened.

6.7 Independency spanning trees

When we look for a spanning tree of a connected graph by depth first search, we
obtain a spanning tree whose leaves are pairwise nonadjacent, called independency
tree, unless it is a hamiltonian path with adjacent end vertices. Bohme, Broersma,
Gobel, Kostochka and Stiebitz [17] showed that a connected graph has no indepen-
dency trees if and only if it is a cycle, a complete graph or a balanced complete

bipartite graph.

6.8 Spanning trees which are isomorphic to particular trees

We consider sufficient conditions for graphs to have a subgraph which is isomorphic

to some particular tree or forest.
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In 1959, Erdés and Gallai [74] proved that if a graph G of order n satisfies
|E(G)| > (k —1)n/2, then G has a path of length k. Motivated by this result, in
1963, Erdds and So6s posed the following conjecture.

Conjecture 38 (Erd6s-S6s) Let G be a graph of order n. If |E(G)| > (k—1)n/2,
then G has every tree of k edges.

A leg of a spider is a path from the center to a vertex of degree one. Recall that
a spider is a tree with at most one branch vertex. Fan and Sun [76] showed that
Erdés-Sés conjecture is true for spiders with three legs and also for spiders that has
no leg of length more than four.

In [77], Faudree, Rousseau, Schelp and Schuster defined a concept “panarboreal”
and gave a degree condition for a graph to be panarboreal. A connected graph G of
order n is said to be panarboreal if for every tree T' of order n, G has a spanning tree
which is isomorphic to 7. In other words, GG contains all trees of order n as spanning

trees.

Theorem 39 (Faudree et al. [77]) Let k > 3 and let n > 3k* — 9k + 8. For a
graph G of order n, if A(G) =n — 1 and 6(G) > n — k, then G is panarboreal.

Clearly, any panarboreal graph of order n must have a vertex of degree n — 1 in
order to have the star K ,_1, and hence the condition A(G) = n — 1 is necessary.
However, if we restrict ourselves to some particular class of trees, we may not need
the maximum degree condition. Erdés, Faudree, Rousseau and Schelp gave the

following result.

Theorem 40 (Erdés et al. [73]) Let k > 2 and let n > 2(3k—2)(2k—3)(k—2)+1.
If G is a graph of order n with 6(G) > n — k, then G contains every tree T with
A(T) < n — 2k + 2 as a spanning tree.

On the other hand, some researchers have tried to find not only a spanning tree

but also a subtree of a graph. The most basic result is the following.

Theorem 41 (Chvatal [43]) For every tree T with k edges, if G is a graph with
0(G) > k, then G has a subgraph which is isomorphic to T

Brandt [22] improved the above result for all forests and Babu and Diwan [9]
improved the condition “0(G) > k” to “oa(G) > 2k +17. Ziolo [194, 195] considered
the bipartite digraph analogue of the above results and gave the minimum indegree
and outdegree condition for bipartite digraphs to have any directed trees or forests
as subgraphs.

In [22], Brandt gave an edge number condition on the existence of subforest,

which was conjectured by Erdés and Sés in [72].
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Theorem 42 (Brandt [22]) Let G be a graph with n vertices. If

\E(G)|Zmax{ < %2_1>,(k;1>+(k—1)(n—k+1)},

then G has every forest with k edges and without isolated vertices as a subgraph.

However, when we want to show that a given graph G is panarboreal, is it
necessary to consider all trees of order |V(G)|? For example, if G has both a path
and a star as spanning trees, G must have a spanning tree which is isomorphic to a
tree obtained from the star of order n — 1 by subdividing one of its edges. Bridgland,
Jamison and Zito [23] defined a spanning-tree forcing set. A set S of trees of order
n forces a tree T if every graph having each tree in S as a spanning tree must also
have T as a spanning tree. A spanning-tree forcing set is the set of trees that forces
every trees of order n. They showed that the star belongs to every spanning-tree
forcing set for order n > 1, and the path belong to every spanning-tree forcing set
for order n ¢ {1,6,7,8}.

7 More than one spanning tree

7.1 Matrix-Tree Theorem

The most classical interest concerning with a spanning tree is the number of spanning
trees of a given graph. Kirchhoff [120] gave a formula for determining it, which is
known as the Matriz-Tree Theorem; The number of spanning trees of a graph G
is the value of any cofactor of the matrix D(G) — A(G), where D(G) is the degree
matrix (the ith diagonal entry is equal to the degree of ith vertex and the other
entry is equal to zero) and A(G) is the adjacency matrix of G (the entry (i,7) is
equal to the number of edges between ith vertex and jth vertex), respectively. This
topic is still much studied, in particular, explicit formulas (or bounds) of the number
of spanning trees for some special classes. That for complete graphs is most famous
among such classes; The number of spanning trees of K, is n" 2, called Cayley’s
Formula [34]. Several proofs of Cayley’s Formula are known, and the most famous
one is due to Priifer [162]. See the good book [144] by Moon for Cayley’s Formula
and the Matrix-Tree Theorem.

The explicit formulas of the number of spanning trees are known for other classes
than complete graphs; complete multipartite graphs [8, 62, 61, 131], regular graphs
[51, pp.95], and circulant graphs [6, 38, 186, 192], and so on. Some upper bounds of
the number of spanning trees are also studied, see [57, 78, 94, 95]. The survey on
Laplacian matrices [142] also contains the topic of the Matrix-Tree Theorem.

On the other hand, a graph is called t-optimal for n vertices and m edges if it
has the maximum number of spanning trees among all graphs with n vertices and m
edges. Some researchers have been considered a t-optimal graph for given integers n
and m, see [16, 39, 91, 118, 156, 158].
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7.2 Edge-disjoint spanning trees

In this section, we concentrate on the existence of edge-disjoint spanning trees. The
results in this section hold for multigraphs. The most famous and basic result is
obtained by Nash-Williams and Tutte, independently. In addition, we obtain the

following corollary.

Theorem 43 (Nash-Williams [146], Tutte [177]) Let G be a connected graph.
Then G has k edge-disjoint spanning trees if and only if |F| > k (w(G — F) — 1) for
any F C E(G).

Corollary 44 Let G be a 2k-edge-connected graph. Then G has k edge-disjoint

spanning trees.

Catlin imporved Corollary 44 and obtained a necessary and sufficient condition

for the existence of k edge-disjoint spanning trees using the term “edge-connectivity”.

Theorem 45 (Catlin [31]) Let G be a connected graph. Then G is 2k-edge-
connected, ((2k + 1)-edge-connected) if and only if G — F has k (k + 1, respectively)
edge-disjoint spanning trees for any F' C E(G) with |F| = k.

As a corollary of Theorem 43, we can calculate the maximum number of edge-
disjoint spanning trees of a given graph. In [155], Palmer determined the number for
several families of graphs; quasi-random graphs, regular graphs, complete bipartite
graphs, cartesian products and the hypercubes and so on.

Cunningham [47] obtained a necessary and sufficient condition for a graph G to
have p spanning trees such that each edge of G lies in at most ¢ spanning trees of
these p spanning trees. Catlin, Grossman, Hobbs and Lai [32] extended this result
to matroids. As an extension of Theorem 43, Chen, Koh and Peng [36] obtained
a necessary and sufficient condition for the existence of spanning forests with a
prescribed number of components. In [37], Chen and Lai gave a short proof of it.
Recently, Catlin, Lai and Shao [33] obtained a generalization of Theorem 45 as like
this result.

On the other hand, several researchers have considered the existence of k edge-
disjoint trees all of which contains specified vertices. Let G be a graph and let
S C V(G). An S-Steiner tree is a tree containing all vertices of S. A subset S of
V(QG) is called k-edge-connected (in G) if for every pair of two vertices u,v in S, there
exist at least k edge-disjoint paths connecting u and v. Kriesell posed the following
conjecture on the existence of k edge-disjoint S-Steiner trees, which is an extension

of Theorem 43. This edge-connectivity condition is best possible.

Conjecture 46 (Kriesell [123]) Let G be a graph and let S C V(G). If S is
2k-edge-connected, then G has k edge-disjoint S-Steiner trees.

19



Let fi(k) (gi(k)) be a function such that for every f;(k)-edge-connected vertex
set S of a graph with |S| <[ ([V(G) — S| <) there exist k edge-disjoint S-Steiner
trees. Petingi and Rodriguez [157] showed ¢;(k) = Qk(%)l. Kriesell [123] proved that
Conjecture 46 is true if G — S is Eulerian, and this implies g;(k) = 2k + 2l. Later,
Petingi and Talatha [159] improved “2k + 2{” to “2k + 1 + 2”. Jain, Mahdian ans
Salavatipour [108] proved fi(k) = L + o(1).

Frank, Kirdly and Kriesell [83] showed that if V(G) — S is an independent set,
then the 3k-edge-connectivity of S guarantees the existence of k edge-disjoint S-
Steiner trees. Kriesell [124] improved this result and obtained that the (m + 2)k-
edge-connectivity guarantees the existence of k edge-disjoint S-Steiner trees, where
m is the order of the largest component of G —S. Lau [128] showed that Conjecture
46 holds if S is 26k-edge-connected. However, Conjecture 46 is still open.

In the rest of this section, we explain some applications of edge-disjoint spanning
trees. In particular, the existence of two edge-disjoint spanning trees implies some
good properties. For a graph G, a set of cycles is called cycle double cover of G if
every edge of GG is contained in exactly two cycles of them. Seymour and Szekeres,

independently, posed the following famous conjecture.

Conjecture 47 (Seymour [169], Szekeres [173]) Let G be a 2-edge-connected
graph. Then G has a cycle double cover.

Jaeger [107] showed that this conjecture is true for 4-edge-connected graphs. We
can show that every graph having two edge-disjoint spanning trees also has a cycle
double cover, and hence Jaeger’s result is implied by Corollary 44. (See also [122].)

On the other hand, the existence of two edge-disjoint spanning trees implies
the existence of a spanning connected Eulerian subgraph. This fact concerns the

following conjecture.

Conjecture 48 (Matthews and Sumner [141]) Every 4-connected claw-free graph

is hamiltonian.

Zhan [190], and independently Jackson [105] proved that Conjecture 48 is true
for 7-connected claw-free graphs. In fact, they proved it by showing the existence of

two edge-disjoint spanning trees.

7.3 Independent spanning trees

Let G be a connected graph and let Ty, 15, ..., T} be spanning trees with root
r of G. We say that 77 and T3 are independent if two paths vIir and vTsr are
internally vertex-disjoint for every vertex v. When 7T; and T} are independent for all
1<i< i<k T 1T, ..., T} are called independent.

If G has k independent spanning trees with root r for all » € V(G), then G is k-

connected because there exist k internally disjoint paths between every two vertices.
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Itai and Rodeh conjectured that the converse also holds.

Conjecture 49 (Itai and Rodeh [104]) Let G be a k-connected graph and let
r € V(G). Then G has k independent spanning trees with root r.

Conjecture 49 is still open, but we have some partial solutions. Itai and Rodeh
[104] showed that it is true for the case k = 2 by themselves. The case k = 3 of Con-
jecture 49 was also shown by Zehavi and Itai [189], and by Cheriyan and Maheshwari
[40], independently. Huck proved that Conjecture 49 is true for 4-connected planar
graphs [100] and for 5-connected planar graphs [103]. For 4-connected planar graphs,
Miura, Takahashi, Nakano and Nishizeki [143] gave a linear-time algorithm for find-
ing four independent spanning trees. Recently, Curran, Lee and Yu [49] proved the
case k = 4 for general graphs using Miura et al.’s algorithm together with an exten-
sion of ear decomposition, called chain decomposition. In [48, 50], they obtained a
chain decomposition of a 4-connected graph. Conjecture 49 still remains open for
k> 5.

On the other hand, there exist some variations of Conjecture 49. The digraph
version of Conjecture 49 is mentioned as follows: For every k-connected digraph D
and every vertex r in D, there exist k independent spanning directed trees with root
r. This conjecture was verified by Whitty [179] for the case K = 2. However, this
conjecture was, unfortunately, disproved by Huck [101] for the general digraph when
k > 3. Therefore it has been considered for some restricted classes. For example, it is
true for acyclic digraphs by Huck [102], for deBruijn and Kautz digraphs by Bermond
and Fraigniaud [15], and for iterated line graphs by Hasunuma and Nagamochi [98].

When we define independent spanning trees, we consider internally “vertex”-
disjoint paths. Similarly, we consider internally “edge”-disjoint paths. For two
spanning trees 77 and 75 with root r, we call them edge-independent if two paths
rTiv and rThv are edge-disjoint for every vertex v. The following edge version of
Conjecture 49 was also proposed by Itai and Rodeh [104]: For every k-edge-connected
graph G and for every vertex r in GG, there exist k£ edge-independent spanning trees
with root . Khuller and Schieber [119] proved that if Conjecture 49 (the vertex
version) is true for some k, then the edge version conjecture is also true for k.
Therefore, we obtain the edge version conjecture is true for the case k < 4 by the
vertex version results as mentioned above. For k > 5, the edge version conjecture is

also still open.

7.4 Graphs which are determined from spanning trees

Let G be a connected graph and let T(G) be the set of spanning trees of G. The tree
graph of G, denoted by T'(G), is the graph such that the vertex set of T'(G) is T(G)
and two vertices T1,T5 € T(G) are adjacent in T'(G) if and only if |E(T7)\ E(T3)| = 1.
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Cummins [46] proved that T'(G) is hamiltonian, so 2-connected. Shank [170] gave a
short proof of it, and Liu [135] obtained a sharp value of the connectivity of the tree
graph using the invariant concerning with the cycle space.

Sometimes we consider a restricted tree graphs. Let G be a connected graph and
let Ty, Ty € T(G) with E(T1)\ E(T2) = {e1} and E(T3)\ E(T1) = {e2}. Note that T
and T5 are adjacent in the tree graph of G. The adjacency tree graph of the graph
G is a graph on T(G) such that 71,75 € T(G) are adjacent if and only if e; and
eg are adjacent in G. The leaf-exchange tree graph is the graph on T(G) such that
T1,T> € T(G) are adjacent if and only if e; and eg are incident with a leaf of 77 and
T5, respectively.

For a connected multigraph G, let p be the dimension of the cycle space, that
is, p := |E(G)| — |V(G)| + 1. Zhang and Chen [191] proved that the adjacency tree
graph of G is p-connected, and Heinrich and Liu [99] improved this result to 2p-
conencted, when G is a simple graph. Estivill-Castro, Noy and Urrutia [75] studied
the chromatic number of the tree graph and the adjacency tree graph.

Harary, Mokken and Plantholt [97] proved that the leaf-exchange tree graph
of a 2-connected graph G is connected. Broersma and Li [25] characterized the
graphs whose leaf-exchange tree graph is connected, and gave a lower bound on the
connectivity of the leaf-exchange tree graph of a 3-connected graph. Kaneko and
Yoshimoto [113] proved that the leaf-exchange tree graph of a 2-connected graph G
is (20(G) — 2)-connected.

Recently, Li, Neumann-Lara and Rivera-Campo [132] defined a new graph on
T(G). For a set C of cycles of a connected graph G, T(G, C) is defined as a spanning
subgraph of the tree graph of G such that T1,7» € T(G) are adjacent if and only
if the unique cycle of 71 U T5 is contained in €. They also gave some necessary
conditions and sufficient conditions for T'(G, C) to be connected.

Yoshimoto [187] proposed other graph on T(G). The trunk graph of G is the
graph on J(G) such that 71,75 € T(G) are adjacent if and only if e; and e are not
adjacent to a leaf of T and a leaf of 15, respectively. He showed that the trunk graph

of a 2-connected k-edge-connected graph of order at least five is (k — 1)-connected.
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