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ABSTRACT

Motivated by the well-known conjecture by Lovász [6] on the connectivity after the path
removal, we study the following problem:

There exists a function f = f(k, l) such that the following holds. For every f(k, l)-
connected graph G and two distinct vertices s and t in G, there are k internally disjoint paths
P1, . . . , Pk with endpoints s and t such that G − ⋃k

i=1 V (Pi) is l-connected.
When k = 1, this problem corresponds to Lovász conjecture, and it is open for all the

cases l ≥ 3.
We show that f(k, 1) = 2k + 1 and f(k, 2) ≤ 3k + 2. The connectivity “2k + 1” for f(k, 1)

is best possible. Thus our result generalizes the result by Tutte [8] for the case k = 1 and
l = 1 (the first settled case of Lovász conjecture), and the result by Chen, Gould and Yu [1],
Kriesell [4], Kawarabayashi, Lee, and Yu [2], independently, for the case k = 1 and l = 2 (the
second settled case of Lovász conjecture).

When l = 1, our result also improves the connectivity bound “22k + 2” given by Chen,
Gould and Yu [1].
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1 Introduction

The following well-known conjecture is due to Lovász [6]:

Conjecture 1 There exists a function g = g(l) such that the following holds. For every
g(l)-connected graph G and two distinct vertices s and t in G, there exists a path P with
endpoints s and t such that G − V (P ) is l-connected.
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Conjecture 1 can also be phrased in terms of finding a cycle containing an arbitrary edge
e such that deleting the vertices of the cycle leaves the graph l-connected. At the same time,
Lovász conjectured that every (l+3)-connected graph G contains a cycle C such that G−V (C)
is l-connected. This was proved by Thomassen [7]. Conjecture 1 is known to be true in several
small cases. A path P connecting two vertices s and t in a given graph G such that G−V (P )
is connected, is called a non-separating path. It follows from a famous result of Tutte [8]
that any 3-connected graph contains a non-separating path connecting any two vertices, and
consequently, g(1) = 3. The case l = 2 was independently obtained by [1] and [4], who showed
g(2) = 5. In fact, Kawarabayashi, Lee and Yu [2] have characterized all 4-connected graphs
that have two vertices s and t such that there is no path P with endpoints s and t so that
G − V (P ) is 2-connected. But as far as we are aware, Conjecture 1 is still (wide) open for
l ≥ 3, and the prospect is not bright (although a weaker version of Lovász’ conjecture was
solved in [3], which settles a conjecture by Kriesell [5].).

In [1], the authors also show that in a (22k + 2)-connected graph, there exist k internally
disjoint non-separating paths P1, . . . , Pk connecting any pair of vertices. In fact, they also
proved that G − ⋃k

i=1 V (Pi) is connected. A related result is given in [9]. These results
motivate us to propose the following conjecture:

Conjecture 2 There exists a function f = f(k, l) such that the following holds. For every
f(k, l)-connected graph G and two distinct vertices s and t in G, there are k internally disjoint

paths P1, . . . , Pk with endpoints s and t such that G − ⋃k
i=1 V (Pi) is l-connected.

Note that when k = 1, Conjecture 2 is exactly Lovász conjecture. In this paper, we
improve the above mentioned connectivity result by Chen, Gould and Yu [1], and give the
best possible connectivity bound. Namely:

Theorem 3 Let k be an integer with k ≥ 1, let G be a (2k + 1)-connected graph and let
s, t ∈ V (G) with s �= t. Then there exist k internally disjoint paths P1, P2, . . . , Pk with

endpoints s and t such that G − ⋃k
i=1 V (Pi) is connected.

Let us observe that Theorem 3 is a far generalization of the Tutte’s above mentioned result
which corresponds to the case l = 1 in Conjecture 1.

Note that the following graph shows that the connectivity condition on Theorem 3 is best
possible. Let A ∪ B be a clique of size 4k with |A| = |B| = 2k. For each 2k vertices W
of A ∪ B such that half of them belong to A and the other half belong to B, we add k + 2
vertices such that each vertex is adjacent to all the vertices in W . Thus we add (k+2)

(
2k
k

)(
2k
k

)
vertices. Finally we add vertices s and t such that s is adjacent to all the vertices of A and
t is adjacent to all the vertices of B, and we call the resulting graph G. Note that G is
2k-connected. Whenever we take k pairwise internally disjoint paths P1, P2, . . . , Pk from s to
t,

⋃k
i=1 Pi must use at least k vertices of A and at least k vertices of B. Now we consider the

added (k +2) vertices which are joined to such 2k vertices. Since at most k of them can be on

one of the paths P1, P2, . . . , Pk, at least two vertices are not used, and hence G − ⋃k
i=1 V (Pi)

is not connected.
We actually prove the following stronger result, whose proof also gives Theorem 3.

2



Theorem 4 Let k be an integer with k ≥ 1, let G be a (3k + 2)-connected graph and let
s, t ∈ V (G) with s �= t. Then there exist k internally disjoint paths P1, P2, . . . , Pk with

endpoints s and t such that G − ⋃k
i=1 V (Pi) is 2-connected.

Let us observe that Theorem 4 is a far generalization of the above mentioned result [1, 2, 4]
which corresponds to the case l = 2 in Conjecture 1. In fact, when k = 1 in Theorem 4,
Theorem 4 implies the above mentioned result [1, 2, 4]. But we do not know if the connectivity
“3k +2” is best possible (except for the case k = 1, which is best possible, as demonstrated in
[2]). We can easily modify the above mentioned example which shows that f(k, 2) ≥ 2k + 2,
but we do not know if this is the lower bound for the connectivity for f(k, 2).

Before we prove Theorems 3 and 4, we give some notations.
A block of a graph G is a maximal connected subgraph of G that has no cut vertex. Note

that any block of a connected graph of order at least two is 2-connected or isomorphic to K2.
For a path P and for two vertices u, v ∈ V (P ) (possibly u = v), we denote the subpath

of P from u to v by P [u, v]. Note that P [u, v] = P [v, u]. Let P (u, v] := P [u, v] − {u},
P [u, v) := P [u, v]−{v}, and P (u, v) := P [u, v]−{u, v}. For convenience, P (u, u] = P [u, u) =
P (u, u) = ∅. Let P1, P2 be two paths with end vertices s1 and s2, respectively. For two vertices
u1 and u2 with ui ∈ V (Pi) for i = 1, 2 and u1u2 ∈ E(G), we denote the path from s1 to s2

obtained by combining P1 and P2 using the edge u1u2 by P1[s1, u1]P2[u2, s2].
In the proof of our main theorem, we use lexicographic order. For two sequences (a1, . . . , al)

and (b1, . . . , bl′) with l < l′ and ai = bi for any 1 ≤ i ≤ l, we regard that (b1, . . . , bl′) is larger
than (a1, . . . , al) in lexicographic order.

2 Proof of Theorems

As we said before, our proof of Theorem 4 will give Theorem 3 too. Thus we first give a proof
of Theorem 4.

Proof of Theorem 4.

Since G is (3k + 2)-connected, there exist k internally disjoint paths P1, P2, . . . , Pk with
endpoints s and t in G such that |G′| ≥ 3 and G′ has at least one edge, where G′ := G −⋃k

i=1 V (Pi) (by just finding an edge e whose endpoints are not any of s and t, and then finding
k disjoint paths between s and t in G − e). Let R be the maximum block in G′ and let l be
the number of components of G′ − R. If l = 0, then R = G′ is 2-connected since |G′| ≥ 3,
and hence there is nothing to prove. So we may assume that l ≥ 1. Let H1, H2, . . . , Hl be
components of G′ − R with |H1| ≥ |H2| ≥ · · · ≥ |Hl|. Take such k internally disjoint paths
P1, P2, . . . , Pk so that

(P1) |R| is as large as possible,

(P2)
(|H1|, |H2|, . . . , |Hl|

)
is as large as possible in lexicographic order, subject to (P1).

By (P1) and (P2), we obtain the following claim.
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Claim 1 For any 1 ≤ r ≤ k, there exist no 2r vertices u1, v1, . . . , ur, vr such that ui, vi ∈
V (Pi), ui ∈ V

(
Pi[s, vi)

)
, uivi+1 ∈ E(G) (the index is taken modulo r), and

⋃r
i=1 V

(
Pi(ui, vi)

) �=
∅. In particular, Pi has no chords.

Proof. Suppose not. Let Qi := Pi[s, ui]Pi+1[vi+1, t] (the index is taken modulo r) for 1 ≤ i ≤ r
and let Qi := Pi for r + 1 ≤ i ≤ k. Then Q1, Q2, . . . , Qk are k internally disjoint paths with
endpoints s and t and fewer vertices than P1, P2, . . . , Pk. This contradicts (P1) or (P2). �

Note that when we apply Claim 1, we may reorder the paths P1, . . . , Pk if necessary.
We say that each path Pi goes from left (closer to s) to right (closer to t). Let ai be the

leftmost neighbor of Hl in Pi and bi be the rightmost neighbor if NG(Hl) ∩ V (Pi) �= ∅. Now
we will perform the following operation, and we shall update the vertices ai and bi for some
1 ≤ i ≤ k at each step.

Operation 1: We define

P̄i :=

{
Pi[s, ai) ∪ Pi(bi, t] if ai and bi exist,

Pi otherwise.

Suppose that there exists an edge uv connecting P̄i and Pj(aj , bj) for some 1 ≤ i, j ≤ k with
u ∈ V (P̄i) and v ∈ V (Pj(aj, bj)). (Note that i �= j by Claim 1.) If u ∈ V (Pi[s, ai)), then we
regard u as the new ai, and if u ∈ V (Pi(bi, t]), then we regard u as the new bi. If ai and bi do
not exist, then we let ai = bi = u as the new ai and bi.

We perform Operation 1 as many times as possible. In each step,
⋃k

i=1 V (P̄i) becomes
smaller, and hence it must stop. Note that ai = bi could happen. For the last ai’s and bi’s, let
A := {ai : 1 ≤ i ≤ k and ai exists} and B := {bi : 1 ≤ i ≤ k and bi exists}. For convenience,
let Pi(ai, bi) = ∅ if ai and bi do not exist. Note that ai could be s and bi could be t.

By the definition of A and B, we obtain the following claim.

Claim 2 There exists no edge connecting
⋃k

i=1 P̄i and
⋃k

i=1 Pi(ai, bi) ∪ Hl.

Proof. Suppose that there exists an edge uv connecting
⋃k

i=1 P̄i and
⋃k

i=1 Pi(ai, bi) ∪Hl, say
u ∈ V (P̄i) and v ∈ V (Pj(aj , bj)) ∪ Hl for some 1 ≤ i, j ≤ k. If v ∈ Hl, this contradicts the
first choice of ai or bi, and if i = j, this contradicts Claim 1. Thus v ∈ V (Pj(aj, bj)) and i �= j.
However, we can still perform Operation 1 for uv, a contradiction again for our final choice
A, B. �

Moreover, the construction of ai and bi implies the following claim, which is crucial for our
proof.

Claim 3 For each 1 ≤ i ≤ k, there exist k internally disjoint paths Q1, Q2, . . . , Qk with
endpoints s and t in

(⋃k
j=1 V (Pj) − Pi(ai, bi)

) ∪ Hl.

Proof. By the symmetry, we only need to prove the case i = 1. If P1(a1, b1) = ∅, then
P1, . . . , Pk satisfy the desired condition, so there is nothing to prove. Thus, we may assume
that P1(a1, b1) �= ∅, and hence a1 and b1 exist with a1 �= b1.
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For a vertex u ∈ ⋃k
i=1 V (Pi) − {s, t}, let τ(u) be the integer with u ∈ V (Pτ(u)). We will

define the sequence of vertices v1, u1, v2, u2, v3, . . . vp+1 as follows. Let v1 be an arbitrary vertex
in P1(a1, b1) and let u1 := a1. For p ≥ 1, if NG(up) ∩ Hl �= ∅, then let vp+1 be any neighbor
of up in Hl. Otherwise, by the definition of Operation 1, up was chosen as a neighbor of some
vertex vp+1 ∈ V

(
Pτ(vp+1)(aτ(vp+1), bτ(vp+1))

)
and let up+1 := aτ(vp+1). Until vm+1 ∈ Hl for some

m, we successive define the vertices up’s and vp’s. Note that by Operation 1, up �= vp and
vp �∈ A ∪ B for any p. The following subclaim guarantees that the above sequence of vertices
v1, u1, v2, u2, v3, . . . , vm, um, vm+1 are well-defined, and moreover, m ≤ k.

Subclaim 1 For any p, p′ with p �= p′, τ(vp) �= τ(vp′).

Proof. Assume that there exist two vertices vp and vp′ with τ(vp) = τ(vp′) and p < p′.
Note that up = up′. Let r := p′ − p and we choose such p and p′ so that r is as small as
possible. By the minimality of r, τ(vj) �= τ(vj′) for any p < j < j′ ≤ p′. Now we have
2r vertices vp+1, up+1 . . . , up′−1, vp′, up′ such that vj , uj ∈ V (Pτ(vj)), uj ∈ V (Pτ(vj)[s, vj)) and
uj−1vj ∈ E(G) for p + 1 ≤ j ≤ p′.

Let j′′ be an integer with p + 1 ≤ j′′ ≤ p′ such that uj′′ was the earliest vertex that is
chosen as a vertex in A among up+1, . . . , up′−1, up′ in Operation 1. By this choice, uj′′+1 (or
up+1 when j′′ = p′) was not chosen yet when we chose uj′′. This implies that there exists at
least one vertex in Pτ(vj′′+1)(uj′′+1, vj′′+1), which corresponds to the older aτ(vj′′+1)

when we

chose uj′′. However, this contradicts Claim 1, because V
(
Pτ(vj′′+1)

(uj′′+1, vj′′+1)
) �= ∅. �

We symmetrically define the other sequence of vertices y1, x1, y2, x2, y3, . . . as follows. Let
y1 = v1 and let x1 := b1. For q ≥ 1, if NG(xq)∩Hl �= ∅, then let yq+1 be any neighbor of xq in
Hl. Otherwise, by the definition of Operation 1, xq was chosen as a neighbor of some vertex
yq+1 ∈ V

(
Pτ(yq+1)(aτ(yq+1), bτ(yq+1))

)
and let xq+1 := bτ(yq+1). Note that by Operation 1, xq �= yq

and yq �∈ A∪B for any q. By the symmetry to Subclaim 1, we obtain the following subclaim,
and hence the above sequence of vertices y1, x1, y2, x2, y3, . . . , yn, xn, yn+1 (with yn+1 ∈ Hl) are
well-defined, and moreover, n ≤ k.

Subclaim 2 For any q, q′ with q �= q′, τ(yq) �= τ(yq′).

Now we give the direction to the edges in P1, P2, . . . , Pk as follows. For each edge upvp+1

(resp. xqyq+1), give the direction from up (resp. yq+1) to vp+1 (resp. xq). For the two vertices
vm+1, yn+1 with vm+1, yn+1 ∈ Hl, let P be a path of Hl from vm+1 to yn+1, and give the
direction to the edges of P along with P from vm+1 to yn+1. For each path Pi, we give the
direction to each edge e from the left to the right, following s to t along the path Pi, except
for the edges in

(I-i) Pi[up, yq]

(I-ii) Pi[yq, vp]

(I-iii) Pi[vp, xq]

if vp, yq ∈ V (Pi) for some p and q and if yq ∈ V (Pi[s, vp)),

(II) Pi[up, vp] if up ∈ V (Pi) for some p and (I) does not occur,

(III) Pi[yq, xq] if yq ∈ V (Pi) for some q and (I) does not occur.
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For the edges in (I-i), (I-iii), (II), or (III), we give no direction and for the edges in (I-ii), we
give the reverse direction, that is, from the right to the left, along the path Pi from vp to yq.

Note that any edge in P1[a1, b1] has no direction. By Subclaims 1 and 2, the above direction
of edges implies that s has out-degree k and in-degree 0, t has out-degree 0 and in-degree k,
and any other vertex has out-degree 1 and in-degree 1, or out-degree 0 and in-degree 0, because
vp, yq �∈ A ∪ B for any p and q. We now delete all the edges that have no assigned direction.
We claim that there are new k pairwise internally disjoint directed paths Q1, Q2, . . . , Qk from
s and t in

(⋃k
j=1 V (Pj) − P1(a1, b1)

) ∪ Hl. To see this, since each vertex, except for s and t,
has in-degree and out-degree exactly one, thus each vertex in Pi can hit at most one directed
path from s to t. This completes the proof of Claim 3. �

By Claim 3, we have the following two claims.

Claim 4 For any Hi with i �= l, there exists no edge connecting Hi and
⋃k

j=1 Pj(aj, bj).

Proof. Suppose that N(Hi) ∩ V (Pj(aj, bj)) �= ∅ for some i �= l and for some 1 ≤ j ≤ k,
say N(Hi) ∩ V (P1(a1, b1)) �= ∅. By Claim 3, there exist k pairwise internally disjoint paths

Q1, Q2, . . . , Qk from s to t in
(⋃k

j=1 V (Pj) − P1(a1, b1)
) ∪ Hl. Note that for any Hr with

1 ≤ r ≤ l−1, all the vertices of Hr are contained in the same component of G−⋃k
j=1 V (Qj)−R,

and Hi ∪ P1(a1, b1) is contained in one component of G − ⋃k
j=1 V (Qj) − R. This contradicts

the choice (P1) or (P2). �

Claim 5 For any 1 ≤ i ≤ k, there exists a vertex zi in R such that there exist no edges
connecting R − {zi} and Pi(ai, bi).

Proof. Suppose not. Then we can take two edges e1 := x1y1 and e2 := x2y2 from R to
Pi(ai, bi) such that x1 �= x2 and x1, x2 ∈ R. (Possibly y1 = y2.) By Claim 3, there exist k

pairwise internally disjoint paths Q1, Q2, . . . , Qk from s to t in
(⋃k

j=1 V (Pj)−Pi(ai, bi)
)∪Hl.

Since x1 �= x2, we obtain R∪e1∪Pi[y1, y2]∪e2 is 2-connected and is contained in G−⋃k
i=1 V (Qi).

This contradicts the choice (P1). �

For each 1 ≤ i ≤ k, we take the vertex zi as in Claim 5, and let z be a cut vertex of G′

which separates R and Hl when Hl is contained in the same component of G′ as R; otherwise
let z be an arbitrary vertex in G′. Possibly, zi = zj for some 1 ≤ i < j ≤ k. By Claims 2,

4 and 5, S := A ∪ B ∪ {z1, z2, . . . , zk, z} separates
⋃k

i=1 Pi(ai, bi) ∪ Hl from the other part.

If V (G) − S − ⋃k
i=1 Pi(ai, bi) − Hl �= ∅, then S is actually a cut set, but this contradicts the

connectivity condition because |S| ≤ 3k + 1. Therefore V (G) = S ∪ ⋃k
i=1 Pi(ai, bi) ∪ Hl, and

this implies that l = 1 and V (G′) − Hl = R = {z1, z2, . . . , zk, z}, A = {s} and B = {t}.
Since |R| ≥ 2, there exists a vertex x in R−{z}, and let r be the integer such that there exist

r paths Pi with NG(x)∩V (Pi(s, t)) �= ∅. Take such a vertex x so that r is as small as possible.
By the symmetry, we may assume that NG(x) ∩ V (Pi(s, t)) �= ∅ for any 1 ≤ i ≤ r. Note that
r ≥ 1. Since zj has no neighbors in Pi (with zi �= zj), our choice of x implies that |R−{z}| ≤ k

r
,

and hence |R| ≤ k
r
+1. Since NG(x) ⊂ {s, t}∪(

R−{x})∪⋃r
i=1 V (Pi(s, t)) and dG(x) ≥ 3k+2,

we obtain |NG(x) ∩ ⋃r
i=1 V (Pi(s, t))| ≥ (3k + 2) − 2 − k

r
> k. This implies that there exists
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a path Pi, say P1, such that |NG(x) ∩ V (P1(s, t))| > k
r
. Let y1 be the leftmost neighbor of x

in P1(s, t) and let y2 be the rightmost one. Note that |V (P1[y1, y2])| ≥ |NG(x)∩ P1(s, t)| > k
r
.

By Claim 3, there exist k pairwise internally disjoint paths Q1, Q2, . . . , Qk from s to t in( ⋃k
j=1 V (Pj)− P1(s, t)

)∪Hl. Since R′ := x∪ xy1 ∪ P1[y1, y2]∪ y2x is a 2-connected subgraph

in G−⋃k
i=1 V (Qi) with |R′| > k

r
+1 ≥ |R|, which contradicts the choice (P1). This completes

the proof of Theorem 4. �

Remark: The almost identical proof of Theorem 4 implies Theorem 3.
Let us give a sketch of the proof. We follow the proof of Theorem 4.
Let G′ := G−⋃k

i=1 V (Pi), and take components H1, . . . , Hl of G′ so that (|H1|, |H2|, . . . , |Hl|)
is as large as possible in lexicographic order. Suppose l ≥ 2 and for the Hl, we do Operation 1
as in the proof of Theorem 4, and thus obtain the vertex set A and B. By the same reason as
in the proof of Theorem 4, Claims 2 and 4 hold, and hence A∪B separates

⋃k
i=1 Pi(ai, bi)∪Hl

from H1. However, this contradicts the connectivity condition because |A ∪ B| ≤ 2k. This
proves Theorem 3. �
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