On Geometric Plane Graphs induced by Path Decompositions

Satoshi Yamashita*

A planar graph G is a graph embeddable into the euclidean plane \mathbb{R}^2 . For a planar embedding $f_0: G \to \mathbb{R}^2$, the image $G_0 = f_0(G)$ is called a plane graph of G corresponding to f_0 and vice versa. A plane graph $\overline{G_0}$ of G is a geometric plane graph if the image of each edge of G is a straight-line segment of \mathbb{R}^2 . Fáry proved that for every planar graph G there exists a geometric plane graph of G, it is called Fáry's theorem [1]. A plane graph G_1 of G is ambient isotopic to a plane graph G_2 of G if there exists an orientation preserving homeomorphism $h: \mathbb{R}^2 \to \mathbb{R}^2$ such that the composition $h \circ f_1 = f_2$, where $f_i: G \to \mathbb{R}^2$ is the planar embedding corresponding to G_i for i = 1, 2. We can prove Fáry's ambient isotopy theorem (in short FAIT): for any planar graph G and any plane graph G_0 of G, there exists a geometric plane graph $\overline{G_0}$ of G such that G_0 is ambient isotopic to $\overline{G_0}$.

A path decomposition $\mathcal{P} = \{P_1, \dots, P_n\}$ of G is a set of n paths of G with positive length such that $\bigcup_{i=1}^n E(P_i) = E(G)$ and $E(P_i) \cap E(P_j) = \emptyset$ for $1 \leq i < j \leq n$, where E(*) is the edge set of *. A plane graph $\overline{G_0}$ of G is a geometric plane graph induced by \mathcal{P} if the image of each path in \mathcal{P} is a straight-line segment of \mathbb{R}^2 . We consider Fáry's ambient isotopy problem induced by a path decomposition: for any planar graph G, a path decomposition \mathcal{P} of G and a plane graph G_0 of G, how condiditons do \mathcal{P} and G_0 satisfy if and only if there exists a geometric plane graph $\overline{G_0}$ of Ginduced by \mathcal{P} such that G_0 is ambient isotopic to $\overline{G_0}$? In this abstract we show FAIT induced by a path decomposition (in short FAITPD) for certain graphs. In FAITPD a path decomposition \mathcal{P} must be 2-acyclic, that is, $P_i \cup P_j$ contains no cycle for $1 \leq i < j \leq n$. A 2-acyclic path decomposition \mathcal{P} is transversal in G_0 if P_i^0 crosses P_j^0 at the vertex $v^0 = P_i^0 \cap P_j^0$ when $P_i \cap P_j \neq \emptyset$ for $1 \leq i < j \leq n$, where the image of a subgraph H of G is denoted by H^0 . We show FAITPD for trees.

THEOREM 1. Let G be a tree, \mathcal{P} a 2-acyclic path decomposition of G and G_0 a plane graph of G. Then \mathcal{P} is transversal in G_0 if and only if there exists a geometric plane graph $\overline{G_0}$ of G induced by \mathcal{P} such that G_0 is ambient isotopic to $\overline{G_0}$.

A 2-cyclic path decomposition \mathcal{P} is *inessential* if $P_i \cap P_j$ is an endvertex of P_i and P_j when $P_i \cap P_j \neq \emptyset$ for $1 \leq i < j \leq n$. We shall define a polygonal path decomposition in G_0 to describe FAIT induced by an inessential path decomposition

^{*}Kisarazu National College of Technology, 2-11-1 Kiyomidaihigashi, Kisarazu, Chiba 292-0041, Japan. E-mail: yamasita@kisarazu.ac.jp

(in short FAITIPD). For any cycle C of G, let \mathcal{P}_i^C be the set of all path-components of the subgraph of G induced by $E(P_i) \cap E(C)$. We set $\mathcal{P}_C = \bigcup_{i=1}^n \mathcal{P}_i^C$. A vertex vof C is a polygonal vertex of \mathcal{P}_C if v is an endpoint of a path in \mathcal{P}_C . We denote the set of all polygonal vertices of \mathcal{P}_C by $V(C; \mathcal{P})$. A polygonal vertex v of \mathcal{P}_C is not convex in G_0 if there exists a path P_i in \mathcal{P} such that v is an internal vertex of P_i and $N(v^0) \cap P_i^0 \subset \operatorname{Int}(C^0)$, where $N(v^0)$ is a regular neighborhood of v^0 in \mathbb{R}^2 and $\operatorname{Int}(C^0)$ is the union of C^0 and its interior. We denote the set of all polygonal vertices of \mathcal{P}_C which are convex in G_0 by $V_{\operatorname{conv}}(C^0; \mathcal{P})$. A 2-acyclic path decomposition \mathcal{P} is polygonal in G_0 if $|V_{\operatorname{conv}}(C^0; \mathcal{P})| \geq 3$ for every cycle of C of G, where * is the number of elements of *. We show FAITIPD.

THEOREM 2. Let G be a planar graph, \mathcal{P} a 2-acyclic inessential path decomposition of G and G_0 a plane graph of G. Then \mathcal{P} is polygonal in G_0 if and only if there exists a geometric plane graph $\overline{G_0}$ of G induced by \mathcal{P} such that G_0 is ambient isotopic to $\overline{G_0}$.

An ordered triple (u, v, w) of three distinct vertices of G is a colinear triple of G if for any geometric plane graph $\overline{G_0}$, there exists a line ℓ of \mathbf{R}^2 such that $\overline{u^0}$, $\overline{v^0}$ and $\overline{w^0}$ are appeared on ℓ in this order. A 2-cyclic path decomposition \mathcal{P} is colinear in G_0 if for any colinear triple (u, v, w) of G, there exists no path P_i in \mathcal{P} such that $u, v \in V(P_i)$.

CONJECTURE 1. Let G be a planar graph, \mathcal{P} a 2-acyclic path decomposition of G and G_0 a plane graph of G. Then \mathcal{P} is transversal, polygonal and colinear in G_0 if and only if there exists a geometric plane graph $\overline{G_0}$ of G induced by \mathcal{P} such that G_0 is ambient isotopic to $\overline{G_0}$.

References

 Fáry I., On straight line representations of planar graphs, Acta Sci. Math. (Szeged) 11 (1948), 229-233.