Distinguishing numbers of 4-regular quadrangulations on the Klein bottle

Aishanjiang Wusuying*, Seiya Negami ${ }^{\dagger}$, Ko Yamamoto ${ }^{\dagger \dagger}$

The distinguishing number is a combinatorial invariant defined for an abstract graph, concerning the symmetry of graphs as follows. Let G be a graph and c : $V(G) \rightarrow\{1,2, \ldots, d\}$ an assignment of labels to the vertices of G. Such a labeling c is called a d-distinguishing labeling of G if no automorphism of G other than the identity map preserves the labels given by c. A graph G is said to be d-distinguishable if G admits a d-distinguishing labeling. The distinguishing number of G is defined as the minimum number d such that G is d-distinguishable and is denoted by $D(G)$. For examples, the distinguishing number of a complete graph K_{n} is $D\left(K_{n}\right)=n$.

Negami and Fukuda have found the distinguishing number of 4 -regular quadrangulation on the torus in [2]. Furthermore, Negami [1] has established a general theorem on the distinguishing number of graphs embedded on closed surfaces, using some technique in topological graph theory. In his theory, "the faithfulness of embedding", defined in [1], plays an important role. Acutually, he has proved that polyhedral graphs faithfully embedded on a closed surface are 2-distinguishable with finitely many exceptions.

We shall focus on 4-regular quadrangulatoin on the Klein bottle in turn and prove the following theorem:

THEOREM 1. Every 4-regular quadrangulatoin on the Klein bottle is 2-distinguishable unless it is isomorphic to one of $Q_{l}(4,2)$ and $Q_{m}(2, r)$ with $r \geq 3$.

There have been classified the 4-regular quadrangulations on the Klein bottle with their standard forms in [3]. According to the classification, any 4-regular quadrangulatoin on the Klein bottle is isomorphic to grid type $Q_{g}(p, r)$ or ladder type $Q_{l}(2 r, s)$ or mesh type $Q_{m}(p, r)$ with suitable parameters p, r or s. The exceptional case $Q_{l}(4,2)$ and $Q_{m}(2, r)$ with $r \geq 3$ are ladder type and mesh type of 4-regular quadrangulations on the Klein bottle, respectively.

We prove the distinguishing number of 4-regular quadrangulations on the Klein bottle in [4].

[^0]In this talk, we will show the distinguish numbers of exceptional cases. For examples, Figure 1 shows $Q_{l}(4,2)$ and one of the distinguishing labelings with distinguishing number three.

Figure $1 \quad Q_{l}(4,2)$ and a labeling

The exception $Q_{m}(2,4)$ is isomorphic to $K_{4,4}$ and the distinguishing number $D\left(K_{4,4}\right)=5$. The distinguishing number of $Q_{l}(4,2)$ is equal to 3 . The infinite series of those quadrangulations on Klein bottle $Q_{m}(2, r)$ with $r \geq 3$ have the distinguishing number 3 in Figure 2.

Figure 2 An infinite series of $Q_{m}(2, r)$ with $r \geq 3$

Consider the auto-homeomorphism of the Klein bottle, then we obtain the following corollary.

COROLLARY 2. The distinguishing number of 4-regular quadrangulations on the Klein bottle takes only three values 2, 3 and 5 .

References

[1] S. Negami, The distinguish number of graphs on closed surfaces, preprint 2008.
[2] T. Fukuda and S. Negami, The distinguishing number of 4-regular quadrangulations on the torus, preprint 2007.
[3] A. Nakamoto and S. Negami, Full-symmetric embeddings of graphs on closed surfaces, Memories of Osaka Kyoiku University, Ser. III Natural Science and Applied Science Vol. 49 No. 1 (2000), 1-15.
[4] W. Aishanjang, S. Negami and K. Yamamoto, The distinguishing number of 4-regular quadrangulations on the Klein bottle, preprint 2008.

[^0]: *College of Mathematics, Physics Information Sciencematics, Xinjiang Normal University, 102 Xinyi Road, Urumqi, Xinjiang Uygur Autonomous Region 830053, P.R. of China. E-mail: aisan2003@yahoo.co.jp
 ${ }^{\dagger}$ Department of Mathematics, Faculty of Education and Human Sciences, Yokohama National University, 79-2 Tokiwadai, Hodogaya-Ku, Yokohama 240-8501, Japan. E-mail: [negami, kou]@edhs.ynu.ac.jp

