On The Convex Division

Shuji Yamada*

Let V is a finite subset of \mathbb{R}^{2}. We assume that V is in the general position, that is, there are no three points in V which belong to a single line. We denote the convex hull of V by $\mathrm{CH}(V)$. An inner point of V is a point of V which is in the interior of $\mathrm{CH}(V)$ and a boundary point of V is a point of V which is in the boundary of $\mathrm{CH}(V)$. Denote the set of inner point of V by $I(V)$ and the set of boundary point of V by $B(V)$. For a boundary point v of V, let e_{1} and e_{2} be the two edge on the boundary $\mathrm{CH}(V)$ incident to v, then we call the area between two extended straight lines of e_{1} and e_{2} the opposite angle area of v of $\mathrm{CH}(V)$ and denote by $O A_{\mathrm{CH}(V)}(v)$ (see Figure 1).

Figure 1 the opposite angle area
Let G be a plane graph G. We call the unbounded region of G the outer region and call the other regions the inner regions. We denote the set of inner regions by $\operatorname{IR}(G)$. We call an edge e of G a boundary edge, if e incidents to the outer region and denote the set of boundary edge by $B E(G)$.

A convex division of $\mathrm{CH}(V)$ with respect to V is a plane graph G with vertex set V whose inner regions are convex and $\bigcup I R(G)=\mathrm{CH}(V)$. We simply say a convex division of V, for a convex division of $\mathrm{CH}(V)$ with respect to V. We say that G is a minimal convex division of V, if there are no convex divisions of V with less inner regions than G.

For a region r of a convex division G and for a vertex v of r, we denote by $\angle_{r}(v)$ the angle between two edges which incident to both of v and r. Let $e=(u, v)$ be an edge of a convex division G and let r_{1} and r_{2} be the regions of each side of e. We say that v is a convex end of e if $\angle_{r_{1}}(v)+\angle_{r_{2}}(v) \leq \pi$. We say that e is an eliminatable edge if u and v are convex ends of e. If e is an eliminatable edge of a convex division $G, G-e$ is a convex division. If e_{1}, \ldots, e_{k} are some eliminatable edges of a convex division G which are mutually non-adjacent, then $G-\left\{e_{1}, \ldots, e_{k}\right\}$ is a convex division.

[^0]THEOREM 1. Let V is a finite subset of \mathbb{R}^{2} with i inner points. Then $\mathrm{CH}(V)$ has a convex division with respect to V which has less than or equal to $\left\lfloor\frac{3 i+3}{2}\right\rfloor$ inner regions.

Proposition 2. For any non-negative integer i, there is a finite subset V of \mathbb{R}^{2} with i inner points such that any convex division of $\mathrm{CH}(V)$ with respect to V has at least $\left\lfloor\frac{3 i+3}{2}\right\rfloor$ inner regions.

Figure 2 An examle which attains the upper bound of the theorem.

[^0]: *Department of Mathematics, Kyoto Sangyo University, E-mail: yamada@cc.kyoto-su.ac.jp

