A problem on arrangements of coins lying on the equilateral triangle latice

Mamoru Watanabe *

This is a joint work with Kiyoshi Ando and Tomoki Nakamigawa. In this talk we will discuss a problem mentioned in a book [1]. Consider a equilateral triangle \triangle ABC each of whose segment has length n and whose vertices are A, B and C. Mark each point on each peripheral segment S which has an integer distance from the endpoints of S, and add all straight segments passing through these points to be parallel to peripheral segments. Denote by T_n the figure given by this way and call it a equilateraltriangle latice. Let $V(T_n)$ be the set of the vertices of T_n . Then T_n has just $\frac{1}{2}(n+1)(n+2)$ vertices.

There are many triangles whose vertices are in $V(T_n)$. In [2], Nakamoto and Watanabe showed that the number of all triangles in T_n is given by $\lfloor \frac{1}{8}n(n+2)(2n+1) \rfloor$. A subset $H \subseteq V(T_n)$ is a *destroyer* if every three points of $V(T_n) - H$ induce no triangle.

We determined all the destroyers in $V(T_n)$ $(i \in \{1, 2, 3, 4, 5, \})$ as given by the following theorem. Let \mathcal{D}_n be the set of minimum destroyers and let $\xi(n)$ be the size of a minimum destroyer. Let B_n be the arrangement a destroyer whose vertices are of $V(T_n) - \{1, 2, \dots, 0'\} \cup \{0'', 1'', 2'', \dots, (n-2)'', (n-1)''\}$ (see Figure 2).

THEOREM 1. $\mathcal{D}_n = \{B_n\}$ for $i \in \{1, 2, 3, 4\}$, and $\mathcal{D}_5 = \{B_5, N_1, N_2\}$, where B_5, N_1 , and N_2 are the configurations as shown in Figure 2. Moreover, $\xi(i) = \frac{1}{2}(i^2 - i + 2)$ for $i \in \{1, 2, 3, 4, 5, \}$.

In $T_n = ABC$, let denote the set of the vertices of the line AB, BC, CA by S_1 , S_2 , S_3 , respectively. The next two lemmas are necessary to discuss about T_i .

LEMMA 2. If $n \ge 2$ and $\mathcal{D}_{n-1} = \{B_{n-1}\}$, then any $H \in \mathcal{D}_n$ satisfies $|S_i \cap H| \le n-1$ for $i \in \{1,2,3\}$.

Moreover, if there exists $i \in \{1, 2, 3\}$ such that $|S_i \cap H| = n - 1$, then $H - S_i \equiv B_{n-1}$.

LEMMA 3. Suppose that $2 \le n \le 5$. Then for any $H \in \mathcal{D}_n$ with $H \not\equiv B_n$, $|S_i \cap H| \le n-2$ for $i \in \{1, 2, 3\}$.

Let $\lambda(n)$ be the maximum size of subsets K of $V(T_n)$ which any three vertices

^{*}Colledge of Science and Industrial Technology, Kurashiki University of Science and the Arts, 2640 Nishinoura, Tsurajima-cho, Kurashiki-shi, Okayama 712-8505, Japan. E-mail: watanabe@cs.kusa.ac.jp

of K does not induce an equilateral triangle. Then, $\xi(n) + \lambda(n) = \frac{1}{2}(n+1)(n+2)$. We obtained the following:

THEOREM 4. $\lambda(n) \ge \frac{1}{6}n^{1.294}$.

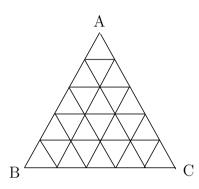


Figure 1. T_5

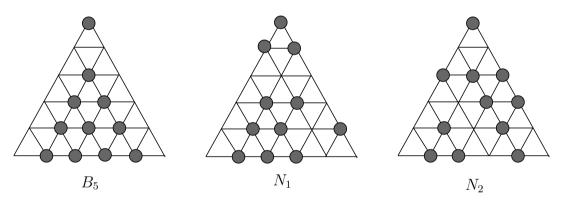


Figure 2. B_5 , N_1 , N_2

References

- Dmitri Fomin, Sergey Genkin and Ilia Itenberg, Mathematical Circles (Russian Experience), American Mathematical Society, 1992.
- [2] A. Nakamoto and M. Watanabe, How many tetrahedora?, The mathematical Gazette, 86(2002),491–498.