Balanced (C_{4}, C_{16})-2t-foil systems

Kazuhiko Ushio*

Let K_{n} denote the complete graph of n vertices. Let C_{4} and C_{16} be the 4-cycle and the 16 -cycle, respectively. The $\left(C_{4}, C_{16}\right)$ - $2 t$-foil is a graph of t edge-disjoint C_{4} 's and t edge-disjoint C_{16} 's with a common vertex. In particular, the (C_{4}, C_{16})-2-foil is called the $\left(C_{4}, C_{16}\right)$-bowtie. When K_{n} is decomposed into edge-disjoint sum of $\left(C_{4}, C_{16}\right)$ - $2 t$-foils, we say that K_{n} has a $\left(C_{4}, C_{16}\right)$-2t-foil decomposition. Moreover, when every vertex of K_{n} appears in the same number of $\left(C_{4}, C_{16}\right)$ - $2 t$-foils, we say that K_{n} has a balanced $\left(C_{4}, C_{16}\right)$-2t-foil decomposition. This decomposition is known as a balanced $\left(C_{4}, C_{16}\right)$-2t-foil system.

THEOREM 1. K_{n} has a balanced $\left(C_{4}, C_{16}\right)$-2t-foil decomposition if and only if $n \equiv$ $1(\bmod 40 t)$.

Proof. (Necessity) Suppose that K_{n} has a balanced (C_{4}, C_{16})-2t-foil decomposition. Let b be the number of $\left(C_{4}, C_{16}\right)$-2t-foils and r be the replication number. Then $b=n(n-1) / 40 t$ and $r=(18 t+1)(n-1) / 40 t$. Among $r\left(C_{4}, C_{16}\right)$ - $2 t$-foils having a vertex v of K_{n}, let r_{1} and r_{2} be the numbers of (C_{4}, C_{16})-2t-foils in which v is the center and v is not the center, respectively. Then $r_{1}+r_{2}=r$. Counting the number of vertices adjacent to $v, 4 t r_{1}+2 r_{2}=n-1$. From these relations, $r_{1}=(n-1) / 40 t$ and $r_{2}=18(n-1) / 40$. Therefore, $n \equiv 1(\bmod 40 t)$ is necessary.
(Sufficiency) Put $n=40 s t+1, T=s t$. Then $n=40 T+1$. Construct a $\left(C_{4}, C_{16}\right)$ $2 T$-foil as follows:
$\{(40 T+1,2 T+1,35 T+2,3 T+1),(40 T+1,1,4 T+2,15 T+2,28 T+3,10 T+2,24 T+$ $3,8 T+2,17 T+3,9 T+2,26 T+3,11 T+2,30 T+3,19 T+2,6 T+2, T+1)\} \cup$ $\{(40 T+1,2 T+2,35 T+4,3 T+2),(40 T+1,2,4 T+4,15 T+3,28 T+5,10 T+3,24 T+$ $5,8 T+3,17 T+5,9 T+3,26 T+5,11 T+3,30 T+5,19 T+3,6 T+4, T+2)\} \cup$ $\{(40 T+1,2 T+3,35 T+6,3 T+3),(40 T+1,3,4 T+6,15 T+4,28 T+7,10 T+4,24 T+$ $7,8 T+4,17 T+7,9 T+4,26 T+7,11 T+4,30 T+7,19 T+4,6 T+6, T+3)\} \cup \ldots \cup$ $\{(40 T+1,3 T, 37 T, 4 T),(40 T+1, T, 6 T, 16 T+1,30 T+1,11 T+1,26 T+1,9 T+$ $1,19 T+1,10 T+1,28 T+1,12 T+1,32 T+1,20 T+1,8 T, 2 T)\}$.
Decompose the $\left(C_{4}, C_{16}\right)$ - $2 T$-foil into $s\left(C_{4}, C_{16}\right)$-2t-foils. Then these s starters comprise a balanced (C_{4}, C_{16})-2t-foil decomposition of K_{n}.

COROLLARY 2. K_{n} has a balanced $\left(C_{4}, C_{16}\right)$-bowtie decomposition if and only if $n \equiv 1(\bmod 40)$.

[^0]Example 1. A $\left(C_{4}, C_{16}\right)$-2-foil of K_{41}.
$\{(41,3,37,4),(41,1,6,17,31,12,27,10,20,11,29,13,33,21,8,2)\}$.
This starter comprises a balanced $\left(C_{4}, C_{16}\right)$-2-foil decomposition of K_{41}.
Example 2. A $\left(C_{4}, C_{16}\right)$-4-foil of K_{81}.
$\{(81,5,72,7),(81,1,10,32,59,22,51,18,37,20,55,24,63,40,14,3)\} \cup$
$\{(81,6,74,8),(81,2,12,33,61,23,53,19,39,21,57,25,65,41,16,4)\}$.
This starter comprises a balanced $\left(C_{4}, C_{16}\right)$-4-foil decomposition of K_{81}.
Example 3. A $\left(C_{4}, C_{16}\right)$-6-foil of K_{121}.
$\{(121,7,107,10),(121,1,14,47,87,32,75,26,54,29,81,35,93,59,20,4)\} \cup$ $\{(121,8,109,11),(121,2,16,48,89,33,77,27,56,30,83,36,95,60,22,5)\} \cup$ $\{(121,9,111,12),(121,3,18,49,91,34,79,28,58,31,85,37,97,61,24,6)\}$.
This starter comprises a balanced $\left(C_{4}, C_{16}\right)$ - 6 -foil decomposition of K_{121}.
Example 4. A $\left(C_{4}, C_{16}\right)$-8-foil of K_{161}.
$\{(161,9,142,13),(161,1,18,62,115,42,99,34,71,38,107,46,123,78,26,5)\} \cup$ $\{(161,10,144,14),(161,2,20,63,117,43,101,35,73,39,109,47,125,79,28,6)\} \cup$ $\{(161,11,146,15),(161,3,22,64,119,44,103,36,75,40,111,48,127,80,30,7)\} \cup$ $\{(161,12,148,16),(161,4,24,65,121,45,105,37,77,41,113,49,129,81,32,8)\}$. This starter comprises a balanced $\left(C_{4}, C_{16}\right)$-8-foil decomposition of K_{161}.

References

[1] C. J. Colbourn, CRC Handbook of Combinatorial Designs, CRC Press, 1996.
[2] C. C. Lindner, Design Theory, CRC Press, 1997.
[3] K. Ushio, G-designs and related designs, Discrete Math. 116 (1993), 299-311.
[4] K. Ushio and H. Fujimoto, Balanced bowtie and trefoil decomposition of complete tripartite multigraphs, IEICE Trans. Fundamentals E84-A, 3 (2001), 839-844.
[5] K. Ushio and H. Fujimoto, Balanced foil decomposition of complete graphs, IEICE Trans. Fundamentals, E84-A, 12 (2001), 3132-3137.
[6] K. Ushio and H. Fujimoto, Balanced bowtie decomposition of complete multigraphs, IEICE Trans. Fundamentals, E86-A, 9 (2003), 2360-2365.
[7] K. Ushio and H. Fujimoto, Balanced bowtie decomposition of symmetric complete multidigraphs, IEICE Trans. Fundamentals, E87-A, 10 (2004), 2769-2773.
[8] K. Ushio and H. Fujimoto, Balanced quatrefoil decomposition of complete multigraphs, $I E-$ ICE Trans. Information and Systems, E88-D, 1 (2005), 19-22.
[9] K. Ushio and H. Fujimoto, Balanced C_{4}-bowtie decomposition of complete multigraphs, IEICE Trans. Fundamentals, E88-A, 5 (2005), 1148-1154.
[10] K. Ushio and H. Fujimoto, Balanced C_{4}-trefoil decomposition of complete multigraphs, $I E$ ICE Trans. Fundamentals, E89-A, 5 (2006), 1173-1180.
[11] W. D. Wallis, Combinatorial Designs, Marcel Dekker, New York and Basel, 1988.

[^0]: *Department of Informatics, Faculty of Science and Technology, Kinki University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan. E-mail: ushio@info.kindai.ac.jp

