Every 4-connected Möbius triangulation is geometrically realizable

Shoichi Tsuchiya*

Let G be a map on a surface F^{2}. A geometric realization of G is an embedding of F^{2} into \mathbb{R}^{3} such that every face of G is flat and that no two faces of G intersect at their interior. That is, a map G on a surface F^{2} has a geometric realization if and only if there is a polytope which is homeomorphic to F^{2} and whose 1-sckelton is isomorphic to G. Steinitz's theorem states that a map on the sphere has a geometric realization if and only if G is 3-connected.

For all surfaces, Grünbaum [6] conjectured that every triangulation on any orientable closed surface has a geometric realization. However, it was proved in 2004 that a triangulation on the orientable closed surface of genus 6 by a complete graph K_{12} has no geometric realization [3]. On the other hand, Archdeacon et al. proved in 2007 that every triangulation on the torus has a geometric realization [1].

In this talk, we consider nonorientable surfaces, in particular, the projective plane, denoted by P^{2}. Since no nonorientable closed surface is embeddable in \mathbb{R}^{3}, no map on it has a geometric realization. However, since the surface obtained from the projective plane by removing a disk (i.e., a Möbius band) is embeddable in \mathbb{R}^{3}, we would like to consider whether a triangulation on the Möbius band (called a Möbius triangulation) has a geometric realization.

However, Brehm [4] has already constructed a counterexample, that is, a Möbius triangulation with no geometric realization, which is shown in Figure 1. By this, the problem was solved negatively, but the following theorem has been proved:

Figure 1 A Möbius triangulation, in which we identify antipodal pair of points of the hexagon, and the shaded face is removed.

[^0]THEOREM 1. (Bonnington and Nakamoto [2]) Let G be a triangulation on the projective plane. Then G has a face f such that $G-f$ has a geometric realization.

Analizing Brehm's example, one can see that the face f in Theorem 1 cannot be chosen in the interior of the 2 -cell region of G bounded by a 3 -cycle C which is disjoint from ∂f, where ∂f denotes the boundary of f. We say that such two 3 -cycles C and ∂f are nested disjoint 3 -cycles in G. Observe that a 5 -connected triangulation has no nested disjoint 3 -cycles, and hence the following theorem is natural but is slightly weak, since the connectivity seems to be decreased to 4 .

Theorem 2. (Chávez, Fijavž, Márquez, Nakamoto and Suárez [5]) Let G be a 5 -connected triangulation on the projective plane. Then, $G-f$ has a geometric realization for any face f of G.

So, in this talk, we shall improve Theorem 2 and characterize a face f of G whose removal gives a geometric realization of $G-f$:

THEOREM 3. Let G be a triangulation on the projective plane and let f be a face of G. Then, $G-f$ has a geometric realization if and only if G has no 3-cycle C forming two nested 3-cycles with the boundary cycle of f.

The folowing is an immediate consequence of Theorem 3.
COROLLARY 4. Every 4-connected Möbius triangulation is geometrically realizable.

References

[1] D. Archdeacon, P. Bonnington and J. Ellis-Monanghan, How to exhibit toroidal maps in space, Discrete Comp. Geom. 38 (2007), 573-594.
[2] P.C. Bonnington and A. Nakamoto, Geometric realization of a projective triangulation with one face removed, Discrete Comp. Geom. 40, 141-157 (2008).
[3] J. Bokowski and A. Guedes de Oliveira, On the generation of oriented matroids, Discrete Comput. Geom. 24 (2000), 197-208.
[4] U. Brehm, A non-polyhedral triangulated Möbius strip, Proc. Amer. Math. Soc. 89 (1983), 519-522.
[5] M.J. Chávez, G. Fijavž, A. Márquez, A. Nakamoto and E. Suárez, Geometric realization of Möbius triangulations, SIAM J. Discrete Math, in press.
[6] B. Grünbaum, "Convex Polytopes", Pure and Applied Mathmatics Vol. 16, InterscienceWiley, New York, 1967.

[^0]: *Graduate School of Environment and Information Sciences, Yokohama National University, 79-2 Tokiwadai, Hodogaya-Ku, Yokohama 240-8501, Japan. E-mail: s-s-t-b@mail.goo.ne.jp

