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Every 4-connected Möbius triangulation is

geometrically realizable

Shoichi Tsuchiya∗

Let G be a map on a surface F 2. A geometric realization of G is an embedding

of F 2 into R3 such that every face of G is flat and that no two faces of G intersect

at their interior. That is, a map G on a surface F 2 has a geometric realization if

and only if there is a polytope which is homeomorphic to F 2 and whose 1-sckelton is

isomorphic to G. Steinitz’s theorem states that a map on the sphere has a geometric

realization if and only if G is 3-connected.

For all surfaces, Grünbaum [6] conjectured that every triangulation on any ori-

entable closed surface has a geometric realization. However, it was proved in 2004

that a triangulation on the orientable closed surface of genus 6 by a complete graph

K12 has no geometric realization [3]. On the other hand, Archdeacon et al. proved

in 2007 that every triangulation on the torus has a geometric realization [1].

In this talk, we consider nonorientable surfaces, in particular, the projective

plane, denoted by P 2. Since no nonorientable closed surface is embeddable in R3,

no map on it has a geometric realization. However, since the surface obtained from

the projective plane by removing a disk (i.e., a Möbius band) is embeddable in R3,

we would like to consider whether a triangulation on the Möbius band (called a

Möbius triangulation) has a geometric realization.

However, Brehm [4] has already constructed a counterexample, that is, a Möbius

triangulation with no geometric realization, which is shown in Figure 1. By this,

the problem was solved negatively, but the following theorem has been proved:

3

2

1

1

2

3

Figure 1 A Möbius triangulation, in which we identify antipodal pair of points of

the hexagon, and the shaded face is removed.
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THEOREM 1. (Bonnington and Nakamoto [2]) Let G be a triangulation on the

projective plane. Then G has a face f such that G − f has a geometric realization.

Analizing Brehm’s example, one can see that the face f in Theorem 1 cannot

be chosen in the interior of the 2-cell region of G bounded by a 3-cycle C which

is disjoint from ∂f , where ∂f denotes the boundary of f . We say that such two

3-cycles C and ∂f are nested disjoint 3-cycles in G. Observe that a 5-connected

triangulation has no nested disjoint 3-cycles, and hence the following theorem is

natural but is slightly weak, since the connectivity seems to be decreased to 4.

THEOREM 2. (Chávez, Fijavž, Márquez, Nakamoto and Suárez [5]) Let G be a

5-connected triangulation on the projective plane. Then, G−f has a geometric real-

ization for any face f of G.

So, in this talk, we shall improve Theorem 2 and characterize a face f of G whose

removal gives a geometric realization of G − f :

THEOREM 3. Let G be a triangulation on the projective plane and let f be a face

of G. Then, G − f has a geometric realization if and only if G has no 3-cycle C

forming two nested 3-cycles with the boundary cycle of f .

The folowing is an immediate consequence of Theorem 3.

COROLLARY 4.Every 4-connected Möbius triangulation is geometrically realizable.

References

[ 1 ] D. Archdeacon, P. Bonnington and J. Ellis-Monanghan, How to exhibit toroidal maps in
space, Discrete Comp. Geom. 38 (2007), 573–594.

[ 2 ] P.C. Bonnington and A. Nakamoto, Geometric realization of a projective triangulation with
one face removed, Discrete Comp. Geom. 40, 141–157 (2008).

[ 3 ] J. Bokowski and A. Guedes de Oliveira, On the generation of oriented matroids, Discrete
Comput. Geom. 24 (2000), 197–208.

[ 4 ] U. Brehm, A non-polyhedral triangulated Möbius strip, Proc. Amer. Math. Soc. 89 (1983),
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