Path Transferability of Graphs on surfaces

Ryuzo Torif*

The graphs discussed here are simple and connected. A path consists of distinct vertices $v_{0}, v_{1}, \ldots, v_{n}$ and edges $v_{0} v_{1}, v_{1} v_{2}, \ldots, v_{n-1} v_{n}$. A path of length n is called an n-path. When the direction of the path P needs to be emphasized, it is denoted $\langle P\rangle$. If there is no danger of confusion, we use the same notation P instead of $\langle P\rangle$. We denote the reverse path of P by P^{-1}. The last(resp. first) vertex of a path P in its direction is called the head (resp. tail) of P and is denoted by $h(P)($ resp. $t(P)$); for $P=\left\langle v_{0} v_{1} \ldots v_{n-1} v_{n}\right\rangle$, we set $h(P)=v_{n}$ and $t(P)=v_{0}$. We consider a path as an ordered sequence of distinct vertices with a head and a tail.

A transfer-move of a path P is to remove the tail and add a vertex at the head: Let P be an n-path. A new n-path P^{\prime} is obtained by deleting the vertex $t(P)$ from P and adding v to P as its new head, (it seems that P takes one step and reaches the next position P^{\prime}). We say that P can transfer (or move) to P^{\prime} by a step and denote it by $P \rightarrow P^{\prime}$. If there is a sequence of paths $P \rightarrow \cdots \rightarrow Q$ for two paths P and Q, then we say that P can transfer (or move) to Q, and denote it by $P \leftrightarrow Q$.

Figure 1

Proposition 1. Let P, Q be n-paths in a graph. If $P \rightarrow Q$, then $Q^{-1} \rightarrow P^{-1}$.

[^0]We regard a path as a "train" that moves along a graph. The main question we study is whether a path can transfer to everywhere on the graph by several steps:

- A graph G is called n-path-transferable or n-transferable if G contains at least one n-path and if any two n-paths in G can transfer from one to another by finite number of steps, that is, $P \rightarrow Q$ holds for any pair of directed n-paths P, Q in G.
- An n-path P in a graph is called reversible if P can transfer to P^{-1}. A graph G is called n-path-reversible or n-reversible if G contains at least one n-path and if any n-path in G is reversible.

We showed in [2], [3] the followings:
Proposition 2. ([2]) If a graph G is n-transferable, then G is ($n-1$)-transferable.
THEOREM 3. ([2]) A graph G is n-transferable if and only if G is n-reversible.
THEOREM 4. ([3]) Unless it is complete or a cycle, a connected graph is δ-transferable, where $\delta \geq 2$ is the minimum degree.

The maximum number n for which a graph is n-transferable is called its path transferability.

Using the result of S. Jendrol' and Z. Skupien [1], we further showed the following result for planar graphs.

THEOREM 5. ([4]) Every planar graph with minimum degree at least three has transferability ≤ 10.

In this talk I will describe recent study of path transferability of graphs on other surfaces.

References

[1] S. Jendrol', Z. Skupień, Local structures in plane maps and distance colourings, Discrete Math. 236 (2001), 167-177.
[2] R. Torii, Path transferability of graphs, Discrete Math. 308 (2008), 3782-3804.
[3] R. Torii, Path transferability of graphs with bounded minimum degree, Discrete Math., to appear.
[4] R. Torii, Path transferability of planar graphs, submitted.

[^0]: *Department of Mathematics, School of Education, Waseda University, 1-6-1 Nishi-waseda, Shin’juku-ku Tokyo 169-8050, Japan. E-mail: torii@toki.waseda.jp

