Perron-Frobenius matrices of finite graphs and edge zeta functions

Seiken Saito*

Let $X=(V, E)$ be a finite undirected loop-free graph with vertex set $V=$ $\left\{v_{1}, \ldots, v_{m}\right\}$ and edge set $E=\left\{e_{1}, \ldots, e_{n}\right\}$. Let $\mathbf{D}\left(X^{\circ}\right)$ be a symmetric digraph uniquely constructed from X° with a direction o as follows:

$$
\mathbf{D}\left(X^{\circ}\right):=\left(V, E^{\prime \prime}\right), \quad E^{\prime \prime}:=\left\{e_{(i, 1)}^{\prime \prime}, e_{(i, 2)}^{\prime \prime}: 1 \leq i \leq n\right\}
$$

with $e_{(i, 1)}^{\prime \prime}:=e_{i}^{\circ}$ and $e_{(i, 2)}^{\prime \prime}:=\overline{e_{i}^{\circ}}$ for $1 \leq i \leq n$, where $\overline{e^{\circ}}$ indicates the inverse arc of e^{0}. The Perron-Frobenius matrix $T=T\left(X^{\circ}\right)=\left(t_{i, j}\right)$ of X° is defined by

$$
t_{i_{1}+n\left(j_{1}-1\right), i_{2}+n\left(j_{2}-1\right)}:= \begin{cases}1, & \text { if } e_{\left(i_{1}, j_{1}\right)}^{\prime \prime} \text { feeds into } e_{\left(i_{2}, j_{2}\right)}^{\prime \prime} \text { in } \mathbf{D}\left(X^{\circ}\right) \text { and } i_{1} \neq i_{2} \\ 0, & \text { otherwise }\end{cases}
$$

for $1 \leq i_{1}, i_{2} \leq n$ and $1 \leq j_{1}, j_{2} \leq 2$.
The Perron-Frobenius matrix of X° is important to compute the edge zeta functions ζ_{X} of X due to the following formula ([1], [4]):

$$
\begin{equation*}
\zeta_{X}\left(u_{1}, \ldots, u_{n}\right)^{-1}=\operatorname{det}\left(I_{2 n}-U T\right)=\operatorname{det}\left(I_{2 n}-T U\right) \tag{1}
\end{equation*}
$$

where $U=\operatorname{diag}\left(u_{1}, \ldots, u_{n}, u_{1}, \ldots, u_{n}\right)$. Note that ζ_{X} is independent of the direction o of the graph X°. The reciprocal $Z_{X}(u)^{-1}$ of the Ihara zeta function can be obtained by specializing variables $u_{i}=u$ for all $i=1, \ldots, n$ in (1).

We give a direction $\sigma=\sigma(X)$ to X determined by the labelling of X as follows:

$$
i<j \Longleftrightarrow o\left(e^{\sigma}\right)=v_{i}, \quad t\left(e^{\sigma}\right)=v_{j}
$$

for all $e=\left\{v_{i}, v_{j}\right\} \in E$, where $o\left(e^{\sigma}\right)$ (resp. $t\left(e^{\sigma}\right)$) is the origin (resp. terminus) of an $\operatorname{arc} e^{\sigma} \in E^{\sigma}$.

DEFINITION 1. For a graph X, we define a bipartite graph $\mathbf{B}=\mathbf{B}(X):=\left(V^{\prime}, E^{\prime}\right)$ as follows. Let $V^{\prime}=\left\{v_{1}, \ldots, v_{m+n}\right\}=V \cup E$ with $v_{m+1}:=e_{1}, \ldots, v_{m+n}:=e_{n}$ and

$$
E^{\prime}:=\left\{f_{(i, 1)}, f_{(i, 2)}: 1 \leq i \leq n\right\}
$$

where $f_{(i, 1)}:=\left\{e_{i}, v_{j_{1}}\right\}$ and $f_{(i, 2)}:=\left\{e_{i}, v_{j_{2}}\right\}$ satisfy $e_{i}=\left\{v_{j_{1}}, v_{j_{2}}\right\} \in E$ and $j_{1}<j_{2}$. Here we remark that $j_{1} \neq j_{2}$ because X is loop-free, hence the above labelling of the edges of \mathbf{B} is well-defined. We index every edge of \mathbf{B} by $e_{2 i+j-2}^{\prime}:=f_{(i, j)}$.

[^0]

Figure $1 \quad \Gamma_{5}$
THEOREM 1. Let X be a finite graph and $\mathbf{B}=\mathbf{B}(X)$ be the associate bipartite graph with the labelling of edges defined as in Definition 1. Let T be the PerronForbenius matrix of X^{σ} and $n=|E|$. Then the following formula holds:

$$
T=P A\left(\mathbf{B}_{L}\right) N^{\top} P-I_{2 n},
$$

where \mathbf{B}_{L} is the undirected line graph of $\mathbf{B}, P:=\left(p_{i j}\right)$ is a $2 n \times 2 n$ permutation matrix defined by:

$$
p_{i j}:= \begin{cases}1, & \text { if } i=n(j+1)-(2 n-1)\lfloor(j+1) / 2\rfloor, \\ 0, & \text { otherwise },\end{cases}
$$

for $1 \leq i, j \leq 2 n,{ }^{\top} P$ denotes the transposed matrix P, and N is the $2 n \times 2 n$ block diagonal matrix of the form:

$$
N:=\left[\begin{array}{ccc}
N_{1} & & \\
& \ddots & \\
& & N_{1}
\end{array}\right], \quad N_{1}:=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

COROLLARY 2. Let $n \in \mathbb{Z}_{>0}$, and let Γ_{n} be the graph with vertex set $V=\left\{v_{1}, v_{2}\right\}$ and edge set $\left\{e_{1}, \ldots, e_{n}\right\}$ such that two vertices of e_{i} are v_{1} and v_{2} for all $1 \leq i \leq n$. Then the reciprocal of the edge zeta function of Γ_{n} is
$\zeta_{\Gamma_{n}}^{-1}=\left(1-\sum_{\ell=1}^{n}(\ell-1) \sum_{\left(i_{1}, \ldots, i_{\ell}\right)} u_{i_{1}} \ldots u_{i_{\ell}}\right)\left(1-\sum_{\ell=1}^{n}(-1)^{\ell-1}(\ell-1) \sum_{\left(i_{1}, \ldots, i_{\ell}\right)} u_{i_{1}} \ldots u_{i_{\ell}}\right)$,
where the second summation runs through all ℓ-tuples $\left(i_{1}, \ldots, i_{\ell}\right) \in\{1,2, \ldots, n\}^{\ell}$ such that $i_{1}<\cdots<i_{\ell}$.

References

[1] K. Hashimoto, Zeta functions of finite graphs and representations of p-adic groups, Advanced Studies in Pure Math. 15 (1989), 211-280.
[2] Y. Ihara, On discrete subgroups of the two by two projective linear group over p-adic fields, J. Math. Soc. Japan 18 (1966), 219-235.
[3] M. Kotani and T. Sunada, Zeta Functions of Finite Graphs, J. Math. Sci. Univ. Tokyo 7 (2000) no.1, 7-25.
[4] H. M. Stark and A. A. Terras. Zeta functions of finite graphs and coverings. Adv. Math. 121 (1996) no.1, 124-165.

[^0]: *Academic Support Center, Kogakuin University, 2665-1 Nakano-machi, Hachiohji, Tokyo 1920015, Japan. E-mail: kt13204@ns.kogakuin.ac.jp

