# The Distinguishing Numbers of Triangulations on the Torus 

Terukazu Sano*

A graph $G$ is said to be $d$-distinguishable if there exists an assignment $f: V(G) \rightarrow$ $\{1,2, \cdots, d\}$ of distinct labels to its vertices, such that if no automorphism of $G$ other than the identity map preserves the labels given by $f$. The distinguishing number of $G$ is defined as the minimum number $d$ such that $G$ is $d$-distinguishable and is denoted by $D(G)$.

There are several studies for the distinguishing numbers of some classes which consist of abstruct graphs. On toporogical graph theory, Tucker has established the distinguishing numbers of maps on surfaces [1]. Fukuda, Negami and Tucker [2] have proved that every triangulation on the sphere is 2-distinguishable, except $K_{4}$, $K_{2,2,2}, \overline{K_{2}}+C_{3}$ and $\overline{K_{2}}+C_{5}$. Negami has showed that all triangulations "faithfully embedded" on a fixed surface are 2-distinguishable with finitely many exceptions [3]. These mainly discussed the 2-distinguishability of graphs on surfaces.

Generally, some graphs on a fixed surface may not be 2-distinguishable. Accordingly, determing the distinguishing numbers of graphs on surfaces is beneficial to studying distinguishability of graphs. The distinguishing number of triangulations $G$ on the projective plane has been determined as follows:

THEOREM 1. (Negami [5]) The distinguishing number of triangulations $G$ on the projective plane takes only five values 1, 2, 3, 4 and 6 .

- $D(G)=3$ if and only if $G$ is isomorphic to either $K_{3,3,3}-K_{3,3}$ or to $H+K_{3}$ for a maximal planar graph $H$ with at least four vertices.
- $D(G)=4$ if and only if $G$ is isomorphic to $K_{4}+\overline{K_{3}}$.
- $D(G)=6$ if and only if $G$ is isomorphic to $K_{6}$.

Similar to this theorem, we shall determine the distinguishing numbers of triangulations on the torus. Our main result is the following:

THEOREM 2. The distinguishing number of triangulations $G$ on the torus takes only five values 1, 2, 3, 4 and 7 .

- $D(G)=3$ if and only if $G$ is isomorphic to C9*, F10*, G13, G14, J4, J5, L, T8, T20 or T21.
- $D(G)=4$ if and only if $G$ is isomorphic to H8, T2, T5 or T7.
- $D(G)=7$ if and only if $G$ is isomorphic to $K_{7}$.

[^0]

Figure 1
To get the actual triangulations in Figure 1, we need to identify the two horizontal segments, and two vertical segments, and subdivide shaded regions suitably.

The theorem tells us two observations: (i) there are infinitely many triangulations which is not 3 -distinguishable, and (ii) every 5 -triangulation on the torus is 2-distinguishable, except $K_{7}, K_{2,2,2,2}, \mathrm{~T} 8$ and T20.

In our talk, we introduce the theory of "re-embedding structure" for triangulations on surfaces and how to apply the theory to the study for distiguishing numbers of triangulations on closed surfaces.

## References

[1] T. W. Tucker, Distinguishability of maps, preprint 2005.
[2] T. Fukuda, S. Negami and T. Tucker, 3-Connected planar graphs are 2-distinguishable with few exceptions, to appear in Yokohama Math. J. (2008).
[3] S. Negami, The distinguishing number of graphs on closed surfaces, preprint in 2006.
[4] A. Nakamoto, S. Negami and T. Tanuma, Re-embedding structures of triangulations on closed surfaces, Sci. Rep. Yokohama Nat. Univ., Sec. I 44 (1997), 41-55.
[5] S. Negami, The distinguishing numbers of triangulations on the projective lane, Congressus Numernatium 186 (2007), 135-144.
[6] A. Sasao, Panel structures of triangulations on the torus, Discrete Math. 303 (2005), no. 1-3, 186-208.


[^0]:    *Graduate School of Environment and InformationSciences, Yokohama National University. E-mail: d08tc004@ynu.ac.jp

