On Chromatic Uniqueness of a Family of K_{4}-Homeomorphs

Roslan Hasni*

All graphs considered here are simple graphs. For such a graph G, let $P(G, \lambda)$ (simply $P(G)$) denote the chromatic polynomial of G. Two graphs G and H are chromatically equivalent (or simply χ-equivalent), denoted by $G \sim H$, if $P(G, l)=$ $P(H, l)$ (simply $P(G)=P(H)$). A graph G is chromatically unique (or simply χ-unique) if for any graph H such that $H \sim G$, we have $H \cong G$, i.e, H is isomorphic to G.

A K_{4}-homeomorph is a subdivision of the complete graph K_{4}. Such a homeomorph is denoted by $K_{4}(a, b, c, d, e, f)$ if the six edges of K_{4} are replaced by the six paths of length a, b, c, d, e, f, respectively. So far, the chromaticity of K_{4} homeomorphs with girth g, where $3 \leq g \leq 9$ has been studied by many authors (see [1,2,3,4]). Recently, Peng in [5] has studied the chromaticity of one type of K_{4}-homeomorphs with girth 7 , that is the chromaticity of $K_{4}(1,3,3, d, e, f)$. In the whole study of K_{4}-homeomorphs with girth 10 , we need to consider 24 types of K_{4}-homeomorphs. In this paper, we discuss the chromaticity of one of these types, namely $K_{4}(3,3,4, d, e, f)$, where d,e,f are at least 3 . The chromaticity of the other types of K_{4}-homeomorphs with girth 10 will be presented in other papers. We also study the chromaticity of $K_{4}(a, a, a+1, d, e, f)$ where $\min \{d, e, f\} \geq a$ and $a \geq 3$.

LEMMA 1. Let $G \cong K_{4}(3,3,4, d, e, f)$ and $H \cong K_{4}\left(3,3,4, d^{\prime}, e^{\prime}, f^{\prime}\right)$, then
(1) $P(G)=(-1)^{x-1}\left[s /(s-1)^{2}\right]\left[-s^{x-1}-s^{5}-3 s^{4}-2 s^{3}+s^{2}+3 s+2+R(G)\right]$, where $R(G)=-s^{d}-s^{e}-s^{f}-s^{d+1}-s^{e+1}-s^{f+1}+s^{d+3}+s^{f+3}+s^{e+4}+s^{e+6}+$ $s^{d+7}+s^{f+7}+s^{d+e+f}, \quad s=1-\lambda, x$ is the number of the edges of G.
(2) If $P(G)=P(H)$, then $R(G)=R(H)$.

Our main results are the following:
THEOREM 2. K_{4}-homeomorph $K_{4}(3,3,4, d, e, f)$ with girth 10 , where d, e, f are at least 3, is χ-unique.

THEOREM 3. K_{4}-homeomorph $K_{4}(a, a, a+1, d, e, f)$ with girth $3 a+1$, where min $\{d, e, f\} \geq a$ and $a \geq 3$ is χ-unique.

[^0]
References

[1] X.E. Chen and K.Z. Ouyang, Chromatic classes of certain 2-connected ($n, n+2$)-graphs homeomorphs to K_{4}, Discrete Mathematics. 172 (1997)
[2] W.M. Li, Almost every K_{4}-homeomorphs is chromatically unique, Ars Combin. 23 (1987)
[3] Y.-I. Peng, Some new results on chromatic uniqueness of K_{4}-homeomorphs, Discrete Mathematics. 288 (2004)
[4] Y.-I. Peng, Chromaticity of family of K_{4}-homeomorphs, personal communication. (2006)
[5] Y.-I. Peng, Chromatic uniqueness of a family of K_{4}-homeomorphs, Discrete Mathematics. (2008), in press.

[^0]: *School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia. E-mail: hroslan@cs.usm.my

