On Chromatic Uniqueness of a Family of K_4 -Homeomorphs

Roslan Hasni*

All graphs considered here are simple graphs. For such a graph G, let $P(G, \lambda)$ (simply P(G)) denote the chromatic polynomial of G. Two graphs G and H are chromatically equivalent (or simply χ -equivalent), denoted by $G \sim H$, if P(G, l) =P(H, l) (simply P(G) = P(H)). A graph G is chromatically unique (or simply χ -unique) if for any graph H such that $H \sim G$, we have $H \cong G$, i.e, H is isomorphic to G.

A K_4 -homeomorph is a subdivision of the complete graph K_4 . Such a homeomorph is denoted by $K_4(a, b, c, d, e, f)$ if the six edges of K_4 are replaced by the six paths of length a, b, c, d, e, f, respectively. So far, the chromaticity of K_4 homeomorphs with girth g, where $3 \leq g \leq 9$ has been studied by many authors (see [1,2,3,4]). Recently, Peng in [5] has studied the chromaticity of one type of K_4 -homeomorphs with girth 7, that is the chromaticity of $K_4(1,3,3,d,e,f)$. In the whole study of K_4 -homeomorphs with girth 10, we need to consider 24 types of K_4 -homeomorphs. In this paper, we discuss the chromaticity of one of these types, namely $K_4(3,3,4,d,e,f)$, where d,e,f are at least 3. The chromaticity of the other types of K_4 -homeomorphs with girth 10 will be presented in other papers. We also study the chromaticity of $K_4(a, a, a + 1, d, e, f)$ where min $\{d, e, f\} \geq a$ and $a \geq 3$.

LEMMA 1. Let $G \cong K_4(3, 3, 4, d, e, f)$ and $H \cong K_4(3, 3, 4, d', e', f')$, then

$$\begin{array}{ll} (1) \ \ P(G) = (-1)^{x-1}[s/(s-1)^2][-s^{x-1}-s^5-3s^4-2s^3+s^2+3s+2+R(G)], \ where \\ R(G) = -s^d-s^e-s^f-s^{d+1}-s^{e+1}-s^{f+1}+s^{d+3}+s^{f+3}+s^{e+4}+s^{e+6}+s^{d+7}+s^{d+7}+s^{d+e+f}, \qquad s=1-\lambda, \ x \ is \ the \ number \ of \ the \ edges \ of \ G. \\ (2) \ \ If \ P(G) = P(H), \ \ then \ \ R(G) = R(H). \end{array}$$

Our main results are the following:

THEOREM 2. K_4 -homeomorph $K_4(3, 3, 4, d, e, f)$ with girth 10, where d, e, f are at least 3, is χ -unique.

THEOREM 3. K_4 -homeomorph $K_4(a, a, a + 1, d, e, f)$ with girth 3a + 1, where min $\{d, e, f\} \ge a$ and $a \ge 3$ is χ -unique.

^{*}School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia. E-mail: hroslan@cs.usm.my

References

- [1] X.E. Chen and K.Z. Ouyang, Chromatic classes of certain 2-connected (n, n + 2)-graphs homeomorphs to K_4 , Discrete Mathematics. **172** (1997)
- [2] W.M. Li, Almost every K_4 -homeomorphs is chromatically unique, Ars Combin. 23 (1987)
- [3] Y.-I. Peng, Some new results on chromatic uniqueness of K_4 -homeomorphs, Discrete Mathematics. **288** (2004)
- [4] Y.-I. Peng, Chromaticity of family of K_4 -homeomorphs, personal communication. (2006)
- [5] Y.-I. Peng, Chromatic uniqueness of a family of K_4 -homeomorphs, *Discrete Mathematics*. (2008), in press.