On partitional labelings of graphs

Rikio Ichishima*and Akito Oshima ${ }^{\dagger}$

In [5], Graham and Sloane defined a graph G of order p and size q with $q \geq p$ to be harmonious if there exists an injective function $f: V(G) \rightarrow \mathbf{Z}_{q}$ such that when each edge $u v \in E(G)$ is labeled $f(u)+f(v) \quad(\bmod q)$, the resulting edge labels are distinct. Such a function is called a harmonious labeling. If G is tree so that $q=p-1$, exactly two vertices are labeled the same; otherwise, the definition is the same.

In [4], Grace defined a sequential labeling of a graph G of size q as an injective function $f: V(G) \rightarrow[0, q-1]$ such that when each edge $u v \in E(G)$ is labeled $f(u)+f(v)$, the resulting edge labels are $[m, m+q-1]$ for some positive integer m. A graph is called sequential if it admits a sequential labeling.

We will denote the set of integers $\{m, m+1, \ldots, n\}$ by simply writing $[m, n]$.
The n-dimensional cube Q_{n} serves as useful models for a broad range of applications such as circuit design, communication network addressing, parallel computation and computer architecture; hence, we concern in this section the sequential labeling of Q_{n}.

THEOREM 1. Let n be an integer with $n \geq 2$. Then the n-dimensional cube Q_{n} is sequential if and only if $n \neq 2,3$.

We introduce a new type of sequential labeling. A sequential labeling f of a graph G with $2 t+s$ edges is called a partitional labeling if G is bipartite with two partite sets X and Y of the same cardinality s such that $f(x) \leq t+s-1$ for all $x \in X$ and $f(y) \geq t-s$ for all $y \in Y$, and there is a positive integer m such that the induced edge labels are partitioned into three sets $[m, m+t-1],[m+t, m+t+s-1]$ and $[m+t+s, m+2 t+s-1]$ with the property that there is an involution π which is an automorphism of G such that π exchanges X and $Y, x \pi(x) \in E(G)$ for all $x \in X$, and $\{f(x)+f(\pi(x)) \mid x \in X\}=[m+t, m+t+s-1]$. A graph is called partitional if it admits a partitional labeling. With this definition in hand, we are now able to present the following result.

THEOREM 2. If G is partitional, then $G \times K_{2}$ is partitional.
If we apply Theorem 2 repeatedly, then we obtain the following result.

[^0]THEOREM 3. If G is partitional, then $G \times Q_{n}$ is partitional for every nonnegative integer n.

In light of Theorem 3 and the fact that every partitional labeling is sequential, harmonious and felicitous (see [3] for the definition of a felicitous labeling), we have the following result.

COROLLARY 4. If G is partitional, then $G \times Q_{n}$ is sequential, harmonious and felicitous for every nonnegative integer n.

Applying Theorem 3 and Corollary 4 with $G \cong Q_{4}$, we obtain the following result, which is a refinement of the 'if' part of Theorem 1.

THEOREM 5. Let n be an integer with $n \geq 4$. Then the n-dimensional cube Q_{n} is partitional, sequential, harmonious and felicitous.

In [2], Gallian and Jungreis have shown that the book $S_{2 m} \times Q_{1}$ is sequential for each positive integer m. In fact, their sequential labeling of $S_{2 m} \times Q_{1}$ satisfy the conditions to be partitional. Thus, we are able to state the following result.

THEOREM 6. For every positive integer m, the book $S_{2 m} \times Q_{1}$ is partitional.
In [1], the ladder $P_{2 m+1} \times Q_{1}$ has been shown to be super edge-magic for every positive integer m, and it induces the partitional labeling of $P_{2 m+1} \times Q_{1}$ by subtracting 1 from its vertex labels; hence, we have the following result.

THEOREM 7. For every positive integer m, the ladder $P_{2 m+1} \times Q_{1}$ is partitional.
COROLLARY 8. For any two positive integers m and n, the generalized book $S_{2 m} \times$ Q_{n} is partitional, sequential, harmonious and felicitous.

COROLLARY 9. For every two positive integers m and n, the generalized ladder $P_{2 m+1} \times Q_{n}$ is partitional, sequential, harmonious and felicitous.

References

[1] R. Figueroa-Centeno, R. Ichishima and F. A. Muntaner-Batle, The place of super edge-magic labelings among other classes of labelings, Discrete Math., 231 (2001), 153-168.
[2] A. J. Gallian and D. S. Jungreis, Labeling books, Scientia, 1 (1988) 53-57.
[3] J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin., 5 (2008), \#DS6.
[4] T. Grace, On sequential labelings of graphs, J. Graph Theory, 7 (1983) 195-201.
[5] R. L. Graham and N. J. Sloane, On additive bases and harmonious graphs, SIAM J. Alg. Discrete Math., 1 (1980) 382-404.
[6] A. Kotzig, Decomposition of complete graphs into isomorphic cubes, J. Comb. Theory, Series B, 31 (1981) 292-296.

[^0]: ${ }^{*}$ College of Humanities and Sciences, Nihon University, 3-25-40 Sakurajyousui E-mail: ichishim@chs.nihon-u.ac.jp
 ${ }^{\dagger}$ Department of Mathematical Information Science, Tokyo university of Science, 1-3 Shinjukuku, Tokyo 162-8601, Japan. E-mail: akito_o@rs.kagu.tus.ac.jp

