Spanning Trees with Bounded Epsilon Excess

Yukichika Ohnishi*

We talk about spanning trees. We give sufficient conditions for a graph to have a spanning tree with bounded epsilon excess, in terms of the number of components obtained when we delete a set of vertices. For a spanning subgraph H of a connected graph G, and n is a nonnegative integer, the *n*-excess of a vertex v is defined to be $\max\{0, \deg_H(v) - n\}$. The total *n*-excess te(H, n) is the summation of the *n*-excesses of all vertices, namely,

$$te(H,n) = \sum_{v \in V(H)} \max\{0, \deg_H(v) - n\}.$$

Let n be an integer more than 3 and ϵ be a nonnegative number smaller than 1. Let S be a subset of V(G) and $\omega(G \setminus S)$ denote the number of components of a graph $G \setminus S$.

THEOREM 1. If for any S,

$$\frac{|S|}{\omega(G-S)} \ge \frac{1-\epsilon}{n-2+\epsilon}$$

holds, then there exists a spanning tree T such that

$$te(T, n) \le \epsilon |V(G)| - 2.$$

Like this, when the total excess bounds with epsilon, we call this *epsilon excess*. First, when we substitute ϵ for 0. We get this.

COROLLARY 2. If for any S,

$$\frac{|S|}{\omega(G-S)} \ge \frac{1-\epsilon}{(n+1)-2+\epsilon} = \frac{1}{n-1}$$

holds, then there exists (n + 1)-tree. That is a spanning tree T such that

$$te(T,n) \le \frac{1}{n}(|V(G)| - 2).$$

Second, when we substitute ϵ for $\frac{1}{n}$. We get this.

COROLLARY 3. If for any S,

$$\frac{|S|}{\omega(G-S)} \geq \frac{1-\epsilon}{n-2+\epsilon} = \frac{1}{n-1}$$

^{*}Department of Mathematics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522 Japan. E-mail: ohnishi@comb.math.keio.ac.jp

holds, then there exists a spanning tree T such that

$$te(T,n) \le \frac{1}{n}|V(G)| - 2.$$

We gave same condition for two, but their conclusions are not same.

We study them and we found that they are essentially equivalent. That is to say.

THEOREM 4. If for any S,

$$\frac{|S|}{\omega(G-S)} \ge \frac{1}{n-1}$$

holds, then there exists (n + 1)-tree T such that

$$te(T,n) \le \frac{1}{n}|V(G)| - 2.$$

References

- M. N. Ellingham and X. Zha, Toughness, trees, and walks, J. Graph Theory 33 (2000), 125–137.
- [2] M. N. Ellingham, Y. Nam, and H.-J. Voss, Connected (g, f)-Factors, J Graph Theory 39 (2002), 62–75.
- [3] H. Enomoto, Y. Ohnishi, and K. Ota, Spanning Trees with Bounded Total Excess, manuscript.