Domatic number of triangulations on surfaces

Atsuhiro Nakamoto*

This is a joint work with Ken-ichi Kawarabayashi (NII) and Tatsuya Honjo (YNU). We consider only finite simple graphs G, and we always suppose $|V(G)|=n$.

We say that $S \subset V(G)$ is dominating in G if for each vertex v of G, v is contained in S, or v has a neighbor in S. Since $V(G)$ is a dominating set of G, we are interested in the minimum cardinality of a dominating set of G, which is called a dominating number of G and denoted by $\gamma(G)$. So we have $\gamma(G) \leq n$ for any graph G, and it is easy to see that the equality holds if and only if $G=\overline{K_{n}}$.

Let $c: V(G) \rightarrow\{1, \ldots, k\}$, where c is not necessarily a proper coloring of G. We say that c is dominating k-coloring of G if for any $i \in\{1, \ldots, k\}, c^{-1}(i)=$ $\{v \in V(G): c(v)=i\}$ is a dominating set in G. It is easy to see that if G has a dominating k-coloring, then G also has a dominating $(k-1)$-coloring. So we are interested in the maximum value of k such that G admits a dominating k-coloring, which is called a domatic number of G and denoted by $\operatorname{Dom}(G)$.

By the definition of the two invariants of graphs, we have the following:
Proposition 1. If a graph G admits a dominating k-coloring, then G has a dominating set of cardinality at most n / k. (I.e., if $\operatorname{Dom}(G) \geq k$, then $\gamma(G) \leq n / k$.)

A triangulation G on a surface is a map of a simple graph with at least three vertices such that each finite face is triangular. For a triangulation on the disk, Matheson and Tarjan proved the following in order to bound a dominating number:

Theorem 2. (Matheson and Tarjan [2]) Every triangulation on the disk has a dominating 3-coloring, that is, $\operatorname{Dom}(G) \geq 3$.

An immediate consequence of Theorem 2 by Proposition 1 is that every triangulation on the disk has a dominating number at most $n / 3$. They also proved that " $n / 3$ " is best possible, by showing that there exists a triangulation on the disk each of whose dominating set has cardinality $\geq n / 3$. Since such an example has many vertices of degree 2 on the boundary cycle, they conjectured that every triangulation on the disk has dominating number at most $n / 4$ if the boundary cycle has length exactly 3. (If this is true, then we can easily prove that the bound " $\leq n / 4$ " is best possible.)

Our main theorem is the following. (We have been motivated by the Plum-

[^0]mer and Zha's result [3] dealing with dominating numbers of triangulations on the projective plane, the torus and the Klein bottle.)

THEOREM 3.

(i) Let G be a triangulation on the projective plane, the torus and the Klein bottle. Then G has a domatic number at least 3.
(ii) For any surface F^{2}, there exists a positive integer $N\left(F^{2}\right)$ such that every triangulation on F^{2} with representativity at least $N\left(F^{2}\right)$ has a domatic number at least 3.
Moreover, every surface admits a triangulation whose domatic number is exactly 3, that is, a triangulation with no dominating 4-coloring.

COROLLARY 4. Every triangulation on the disc (or the sphere), the projective plane, the torus and the Klein bottle has a dominating number at most n/3. Moreover, the same fact holds for triangulations on any surface with sufficiently large representativity.

The estimation of domatic numbers in Theorems 2 and 3 cannot be improved, but we conjecture that the assumption for the representativity in Theorem 3(ii) can be removed. On the other hand, the bound in Corollary 4 is not best possible, since the converse of Proposition 1 does not hold in general. Hence we conjecture the following (for which King and Pelsmajer [1] have proved it is true for plane triangulations with maximum degree 6).

CONJECTURE 1. Every triangulation on any surface with sufficiently large number of vertices has a dominating number at most $n / 4$.

References

[1] E.L.C. King and M.J. Pelsmajer, Dominating Sets in Triangulations, preprint.
[2] L. Matheson and R. Tarjan, Dominating sets in planar graphs, European J. Combin. 17 (1996) 565-568.
[3] M.D. Plummer and X. Zha, On certain spanning subgraphs of embeddings with applications to domination, to appear in Discrete Math.

[^0]: *Faculty of Education and Human Sciences, Yokohama National University, 79-2 Tokiwadai, Hodogaya-Ku, Yokohama 240-8501, Japan. E-mail: nakamoto@edhs.ynu.ac.jp

