Polynomial time algorithms for computing Jones polynomials of certain links

Masao Hara* Masahiko Murakami ${ }^{\dagger}$ Seilchi Tani ${ }^{\ddagger}$ Makoto Yamamoto ${ }^{\S}$

Given any link diagram, we can color the faces black and white in such a way that no two faces with a common arc are the same color. We color the unique unbounded face white. We can get the edge-labeled planar graph (see Figure 1). Its vertices are the black faces of the Tait coloring and two vertices are joined by a labeled edge if they share a crossing. The label of an edge is +1 or -1 according to the (conventional) rule. We call the graph the Tait graph of the diagram. Note that the number of the edges in the graph is equal to the number of the crossings of the diagram.

Figure 1 The Tait coloring, the Tait graph of a link diagram and labels of edges.
The Jones polynomial [3] is a useful invariant in knot theory. By using Kauffman's method [4], the Jones polynomial is computable with $\mathcal{O}\left(2^{\mathcal{O}(n)}\right)$ additions and multiplications in polynomials of degree $\mathcal{O}(n)$, where n is the number of the edges in the input Tait graph. F. Jaeger, D.L. Vertigan and D.J.A. Welsh showed that computing the Jones polynomial is generally $\# \mathbf{P}$-hard $[2,10]$. It is expected to require exponential time in the worst case.

Recently, it has been recognized that it is important to compute Jones polynomials for links with reasonable restrictions. J.A. Makowsky [5, 6] showed that Jones polynomials are computable in polynomial time if treewidths of input Tait graphs are bounded by a constant. J. Mighton [7] showed that Jones polynomials

[^0]are computable with $\mathcal{O}\left(n^{4}\right)$ operations in polynomials of degree $\mathcal{O}(n)$ if treewidths of input Tait graphs are at most two. M. Hara, S. Tani and M. Yamamoto [1] showed that Jones polynomials of arborescent links are computable with $\mathcal{O}\left(n^{3}\right)$ operations in polynomials of degree $\mathcal{O}(n)$. T. Utsumi and K. Imai [9] showed that Jones polynomials of pretzel links are computable in $\mathcal{O}\left(n^{2}\right)$ time.

We propose algorithms for computing Jones polynomials of 2-bridge links, closed 3-braid links and Montesinos links introduced by J.M. Montesinos [8] as shown in Figure 2 with $\mathcal{O}(n)$ additions and multiplications in polynomials of degree $\mathcal{O}(n)$, namely in $\mathcal{O}\left(n^{2} \log n\right)$ time. 2-bridge links, closed 3 -braid links and Montesinos links are basic links and have been profoundly studied in knot theory.

Figure 2 Tait graphs of a 2-bridge link, a closed 3-braid link and a Montesinos link.

References

[1] M. Hara, S. Tani, M. Yamamoto, A polynomial-time algorithm for computing the Jones polynomials of arborescent links, in: Information Technology Letters, vol. 1, 2002, pp. 16-17 (in Japanese).
[2] F. Jaeger, D.L. Vertigan, D.J.A. Welsh, On the computational complexity of the Jones and Tutte polynomials, Math. Proc. Cambridge Philos. Soc. 108 (1990) 35-53.
[3] V.F.R. Jones, A polynomial invariant for knots via Von Neumann algebras, Bull. Amer. Math. Soc. 12 (1985) 103-111.
[4] L.H. Kauffman, State models and the Jones polynomial, Topology 26 (1987) 395-407.
[5] J.A. Makowsky, Colored Tutte polynomials and Kauffman brackets for graphs of bounded tree width, in: Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, 2001, pp. 487-495.
[6] J.A. Makowsky, Coloured Tutte polynomials and Kauffman brackets for graphs of bounded tree width, Discrete Appl. Math. 145 (2005) 276-290.
[7] J. Mighton, Knot Theory on Bipartite Graphs, Ph.D. Thesis, Dept. of Math., University of Toronto, Canada, 1999.
[8] J.M. Montesinos, Una familia infinita de nudos representados no separables, Revista Math. Hisp. Amer. (IV) 33 (1973) 32-35.
[9] T. Utsumi, K. Imai, Computation of the Jones Polynomials for Pretzel Links, IPSJ SIG Tech. Rep. (085) (2002) 43-48 (in Japanese).
[10] D.J.A. Welsh, Complexity: Knots, Colorings and Counting, Cambridge Univ. Press, Cambridge, 1993.

[^0]: *School of Sciences, Tokai University, 1117 Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan. E-mail: masao@ss.u-tokai.ac.jp
 ${ }^{\dagger}$ College of Humanities and Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan. E-mail: masahiko@tani.cs.chs.nihon-u.ac.jp
 ${ }^{\ddagger}$ College of Humanities and Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan. E-mail: sei-ichi@tani.cs.chs.nihon-u.ac.jp
 ${ }^{\S}$ Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 1128551, Japan. E-mail: makotoy@math.chuo-u.ac.jp

