K_{6}-Minors in triangulations on the nonorientable surface of genus 3

Raiji MukaE*

It is easy to characterize graphs with no K_{k}-minors for any integer $k \leq 4$, as follows. For $k=1,2$, the problem must be trivial, and for $k=3,4$, those graphs are forests and series-parallel graphs (i.e., graphs obtained from K_{3} by a sequence of replacing a vertex of degree 2 with a pair of parallel edges, or its inverse operation.) Moreover, Wagner formulated a fundamental characterization of the graphs having no K_{5}-minor [4]. However, a complete characterization of graphs having K_{6}-minor seems to be a difficult problem, in general.

In our talk, we consider the following problem: For a given triangulation G, which complete graph K_{n} is contained in G as a minor? It is easy to see that every triangulation G on any surface has a K_{4}-minor, and that every triangulation G on any non-spherical surface has a K_{5}-minor. The following are complete characterizations of triangulations on the projective plane and the torus with no K_{6}-minor:

THEOREM 1. ([2])

(1) A triangulation G on the projective plane has no K_{6}-minor if and only if G has a K_{4}-quadrangulation as a subgraph.
(2) A triangulation G on the torus has no K_{6}-minor if and only if G has a K_{5} quadrangulation as a subgraph.

Let \mathbb{N}_{k} denote the nonorientable surface of genus k, respectively. A 4-quadrangle is a plane graph whose outer cycle has length 4 and all of whose inner cycles have length 3. A 4-annulus $\left(A, C_{1}, C_{2}\right)$ is a triangulation on the annulus with boundary cycles C_{1}, C_{2} such that $\left|C_{1}\right|=\left|C_{2}\right|=4$, where we allow $C_{1} \cap C_{2} \neq \emptyset$. We say that $\left(A, C_{1}, C_{2}\right)$ is nested if there are $m(\geq 2)$ homotopic 4-cycles D_{1}, \ldots, D_{m} lying on the annulus in this order such that $C_{1}=D_{1}, C_{2}=D_{m}$, and $V\left(D_{j}\right) \cap V\left(D_{j+1}\right) \neq \emptyset$ for each j. Let H be a K_{4}-quadrangulation on the projective plane with faces F_{1}, F_{2}, F_{3}. A Möbius quadrangle is a map on the Möbius band obtained from a H by
(i) removing the interior of F_{i}, for $i=1,2,3$,
(ii) for $i=1,2$, pasting a 4-quadrangle Q to the boundary of F_{i}, and
(iii) pasting a nested 4 -annulus or a 4 -annulus with an essential 3 -cycle to F_{3} so that one of its two boundary components and the boundary of F_{3} are identified.
Similarly, we define a torus quadrangle from a K_{5}-quadrangulation on the torus.

[^0]The following are the results for the Klein bottle and the double torus.
THEOREM 2. ([1, 3])
(1) A triangulation G on the Klein bottle has no K_{6}-minor if and only if G is obtained from two Möbius quadrangles by identifying their boundaries.
(2) A triangulation G on the double torus has no K_{6}-minor if and only if G is obtained from two torus quadrangles by identifying their boundaries.

In this talk, we consider the nonorientable surface of genus 3 and prove the following.

ThEOREM 3. A triangulation G on \mathbb{N}_{3} has no K_{6}-minor if and only if G is obtained by one of the following procedures.
(i) Let H be a K_{4}-quadrangulation with faces F_{1}, F_{2}, F_{3}, and replace the interior of F_{1}, F_{2} with Möbius quadrangles respectively, and replace F_{3} with a 4-quadrangle,
(ii) Let P be a plane graph all of whose faces are triangular, except exactly three quadrilateral faces A, B, C with $\partial A=a_{1} a_{2} a_{3} a_{4}, \partial B=b_{1} b_{2} b_{3} b_{4}, \partial C=c_{1} c_{2} c_{3} c_{4}$, such that either $a_{1}=b_{1}=c_{1}$ or $a_{3}=b_{1}, b_{3}=c_{1}, c_{3}=a_{1}$. Replace the interior of quadrilateral faces A, B, C by a Möbius quadrangle.
(iii) Paste a Möbius quadrangle and a torus quadrangle along their boundaries.

We have the following, since all triangulations on \mathbb{N}_{3} with no K_{6}-minor has a separating essential cycle of length at most 4 and an essential non-separating 3-cycle, by Theorem 3 .

COROLLARY 4. Every 5 -connected triangulation on \mathbb{N}_{3} has a K_{6}-minor, and every 5 -representative triangulation on \mathbb{N}_{3} has a K_{6}-minor.

Corollary 4 holds for all the surfaces we dealt so far, and hence we conjecture that this holds for all surfaces.

References

[1] K. Kawarabayashi, R. Mukae and A. Nakamoto, K_{6}-minors in triangulations on the Klein bottle, to appear in SIAM. J. Discrete. Math.
[2] R. Mukae and A. Nakamoto, K_{6}-minors in triangulations and complete quadrangulations, to appear in J. Graph Theory
[3] A. Nakamoto, Y. Oda and K, Ota, K_{6}-Minors in triangulations on the double torus, Congr. Numer. 188 (2007), 150-160.
[4] K. Wagner, Über eine Eigenschaft der ebenen Komplexe, Math. Ann. 114 (1937), 570-590.

[^0]: *Graduate School of Environment and Information Sciences, Yokohama National University, 79-2 Tokiwadai, Hodogaya-Ku, Yokohama 240-8501, Japan. E-mail: d07tc019@ynu.ac.jp

