On irreducible rectangle tilings without a spiral

Tomoe Motohashi*

Let \mathbb{R}^2 be the Euclidean plane. A subset r of \mathbb{R}^2 is a upright rectangle if $r = [a, b] \times [c, d]$ for some real numbers a < b and c < d where [p, q] denotes the closed interval with end points p and q. Then the boundary ∂r of r is defined by $\partial r = \{a, b\} \times [c, d] \cup [a, b] \times \{c, d\}$. The interior intr of r is defined by int $r = r - \partial r$. The points (a, c), (a, d), (b, c), (b, d) are called the *corners* of r. Each of $\{a\} \times [c, d], \{b\} \times [c, d], [a, b] \times \{c\}$ and $[a, b] \times \{d\}$ is called an *edge* of r. All rectangles in this article are upright and in the following we omit the adjective upright. Throughout this article S denotes a rectangle. Let \mathcal{R} be a set of rectangles. We say that \mathcal{R} is a *tiling of* S if the following conditions hold:

(1)
$$S = \bigcup_{r \in \mathcal{R}} r$$
,

(2) if $r, s \in \mathcal{R}$ and $r \neq s$ then $r \cap s = \partial r \cap \partial s$,

(3) for any $x \in S$ there is a neighbourhood N of x in S such that only finitely many elements of \mathcal{R} have non-empty intersection with N.

Then we call each element in \mathcal{R} a *tile*. If \mathcal{R} is a tiling of S then, by the compactness of S, we have that \mathcal{R} is a finite set.

By a *line* we mean a straight line in \mathbb{R}^2 . By a *half line* we mean a straight half line in \mathbb{R}^2 . By a *line segment* we mean a straight line segment in \mathbb{R}^2 . Note that a line has no end points and separates \mathbb{R}^2 into two regions. A half line has just one end point and a line segment has just two end points. Note that if a line L is oriented then the left-hand side of L and the right-hand side of L are well-defined.

Let \mathcal{R} be a tiling of S, r a tile in \mathcal{R} and x a corner of r. Let $\deg(x, \mathcal{R})$ be the number of tiles in \mathcal{R} containing x. Then we have that $\deg(x, \mathcal{R}) = 1, 2, 3$ or 4 and the first two cases occur in the case that $x \in \partial S$. We call $\deg(x, \mathcal{R})$ the *degree* of xin \mathcal{R} . Suppose that x is a corner of r and $\deg(x, \mathcal{R}) = 3$. Let s and t be the other tiles in \mathcal{R} containing x. Let L be the line containing the line segment $s \cap t$. We orient L by the direction from x to the other end point of $s \cap t$. We say that a corner x of r with $\deg(x, \mathcal{R}) = 3$ is a *right* (resp. *left*) *type corner of* r if r is contained in the left-hand (resp. right-hand) side of L. We say that a tile r in \mathcal{R} is a *right* (resp. *left*) *spiral* if every corner of r is a right (resp. left) type corner. We say that a tile r in \mathcal{R} is a *spiral* if it is a right spiral or a left spiral.

We say that a tile r in \mathcal{R} is a *right* (resp. *left*) *pseudo spiral* if r is a right (resp.

^{*}Department of Network and Multi-Media Engineering, College of Engineering, Kanto Gakuin University, 1-50-1 Mutsuura Higashi, Kanazawa-ku, Yokohama 236-8501, Japan. E-mail: tomoe@kanto-gakuin.ac.jp

left) spiral, or one of the corners of r has degree four and the other corners are right (resp. left) type corners of r. We say that a tile r in \mathcal{R} is a *pseudo spiral* if it is a right pseudo spiral or a left pseudo spiral.

We say that a tiling \mathcal{R} of S is *irreducible* if for any tiles r and s in \mathcal{R} with $r \neq s$ the union $r \cup s$ is not a rectangle. We say that a tiling \mathcal{R} of S is *strongly irreducible* if it is irreducible, and for any proper subset \mathcal{Q} of \mathcal{R} which contains at least two tiles the union $\bigcup r$ is not a rectangle.

A tiling \mathcal{R} is *nontrivial* if \mathcal{R} contains at least two tiles. A tiling \mathcal{R} is *generic* if every corner of every tile in \mathcal{R} has degree less than 4.

THEOREM 1. ([1]) Let \mathcal{R} be a nontrivial irreducible tiling of a rectangle. Then \mathcal{R} contains a pseudo spiral.

By definition a pseudo spiral in a generic tiling is a spiral. Therefore we immediately have the following corollary.

COROLLARY 2. ([1]) Let \mathcal{R} be a nontrivial generic irreducible tiling of a rectangle. Then \mathcal{R} contains a spiral.

We consider the case that a tiling does not contain a spiral, and obtain the following theorem.

THEOREM 3. Let \mathcal{R} be a nontrivial irreducible tiling of a rectangle. If \mathcal{R} does not contain a spiral, then \mathcal{R} contains at least four pseudo spirals.

References

 Tomoe Motohashi,Kouki Taniyama, An irreducible rectangle tiling contains a spiral, submitted 2008. Journal of Geometry,