Domination tricritical graph

D.A. Mojdeh*

The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G, and a dominating set of minimum cardinality is called a $\gamma(G)$ -set. Note that removing a vertex can increase the domination number by more than one, but can decrease it by at most one. A graph G is a critical (bicritical) graph if the removal of any vertex (pair of vertices) decreases the domination number. For many graphs parameters, criticality (bicriticality) is a fundamental question. Much has been written about those graphs where a parameter goes up or down whenever an edge or a vertex (two vertices) is removed (are removed). Here, the tricritical graphs are introduced and those graphs where the domination number decreases on the removal of any set of 3 vertices are studied, we show with tricritical. It is useful to write the vertex set of a graph as a disjoint union of three sets according to how their removal affects $\gamma(G)$. Let $V(G) = V^0 \cup V^+ \cup V^-$ where $V^0 = \{v \in V | \gamma(G - v) = \gamma(G)\}, V^+ = \{v \in V | \gamma(G - v) > \gamma(G)\}, V^- = \{v \in V | \gamma(G - v) < \gamma(G)\}$, see[1,2,3]. We denote the distance between two vertices x and y in G by $d_G(x, y)$ and the diameter of G denoted by diam(G), is the maximum $d_G(x, y)$ for $\{x, y\} \subseteq V(G)$, see[4].

Observation 1 What relation does exist between criticality, bicriticality and tricricality of a graph?

Observation 2 If G is a connected tricritical graph such that diam(G) = 2 then $\forall x, y, z \in V(G), \ \gamma(G - \{x, y, z\}) \ge \gamma(G) - 2.$

Observation 2 implies that, if $\gamma(G - \{x, y, z\}) = \gamma(G) - 3$ for any three distinct vertices x, y and z, then G has no edge.

Observation 3 The tricritical graph has no a vertex of degree 3.

Proposition 4 If G is a tricritical graph, then $V = V^- \cup V^0$, that is, $V^+ = \emptyset$. Furthermore, (1) either G is critical, or G - v is bicritical for all $v \in V^0$ and (2) either G is bicritical or $G - \{v, w\}$ is critical for every $\{v, w\}$ such that $\gamma(G - \{v, w\}) = \gamma(G)$.

^{*}School of Mathematical Sciences, University Sains Malaysia, 11800 Penang, Malaysia. E-mail: d.a.mojdeh@gmail.com

2-tricritical graphs is characterized.

Observation 5 There is not any 2-tricritical graph with 5 vertices.

Proposition 6 A graph G is 2-tricritical if and only if $G = P_1 \cup K_1$, P_3 , $2P_1$, $P_2 \cup K_1$, $C_3 \cup K_1$ or $G = K_{2n} - M$ where $n \ge 2$ and M is a perfect matching in K_{2n} .

Proposition 7 Let G be a connected tricritical graph, then we have: 1. If G is bicritical, then $\delta(G) \ge 4$. 2. If G is not bicritical, then $\delta(G) = 2$ or $\delta(G) \ge 4$.

References

- R.C. Brigham, P.Z. Chinn, R.D. Dutton, Vertex domination-critical graphs, Networks 18 (1988) 173?179.
- [2] R.C.Brigham, T.W. Haynes, M.A. Henning, D.F. Rall, Bicritical domination, Discreat mathematics, 305 (2005) 18-32.
- [3] O. Favaron, D. Sumner, E. Wojcicka, The diameter of domination-critical graphs, J. Graph Theory, 18 (1994) 723-724.
- [4] D.B. West, Introduction to Graph Theory (Second Edition). Prentice Hall USA 2001.