Domination tricritical graph

D.A. Mojdeh*

The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G, and a dominating set of minimum cardinality is called a $\gamma(G)$-set. Note that removing a vertex can increase the domination number by more than one, but can decrease it by at most one. A graph G is a critical (bicritical) graph if the removal of any vertex (pair of vertices) decreases the domination number. For many graphs parameters, criticality (bicriticality) is a fundamental question. Much has been written about those graphs where a parameter goes up or down whenever an edge or a vertex (two vertices) is removed (are removed). Here, the tricritical graphs are introduced and those graphs where the domination number decreases on the removal of any set of 3 vertices are studied, we show with tricritical. It is useful to write the vertex set of a graph as a disjoint union of three sets according to how their removal affects $\gamma(G)$. Let $V(G)=V^{0} \cup V^{+} \cup V^{-}$where $V^{0}=\{v \in V \mid \gamma(G-v)=\gamma(G)\}, V^{+}=\{v \in$ $V \mid \gamma(G-v)>\gamma(G)\}, V^{-}=\{v \in V \mid \gamma(G-v)<\gamma(G)\}$, see[1,2,3]. We denote the distance between two vertices x and y in G by $d_{G}(x, y)$ and the diameter of G denoted by $\operatorname{diam}(G)$, is the maximum $d_{G}(x, y)$ for $\{x, y\} \subseteq V(G)$, see[4].

Observation 1 What relation does exist between criticality, bicriticality and tricricality of a graph?

Observation 2 If G is a connected tricritical graph such that $\operatorname{diam}(G)=2$ then $\forall x, y, z \in$ $V(G), \gamma(G-\{x, y, z\}) \geq \gamma(G)-2$.

Observation 2 implies that, if $\gamma(G-\{x, y, z\})=\gamma(G)-3$ for any three distinct vertices x, y and z, then G has no edge.

Observation 3 The tricritical graph has no a vertex of degree 3.

Proposition 4 If G is a tricritical graph, then $V=V^{-} \cup V^{0}$, that is, $V^{+}=\emptyset$. Furthermore, (1) either G is critical, or $G-v$ is bicritical for all $v \in V^{0}$ and (2) either G is bicritical or $G-\{v, w\}$ is critical for every $\{v, w\}$ such that $\gamma(G-\{v, w\})=\gamma(G)$.
*School of Mathematical Sciences, University Sains Malaysia, 11800 Penang, Malaysia. E-mail: d.a.mojdeh@gmail.com

2-tricritical graphs is characterized.

Observation 5 There is not any 2-tricritical graph with 5 vertices.

Proposition 6 A graph G is 2-tricritical if and only if $G=P_{1} \cup K_{1}, P_{3}, 2 P_{1}, P_{2} \cup K_{1}$, $C_{3} \cup K_{1}$ or $G=K_{2 n}-M$ where $n \geq 2$ and M is a perfect matching in $K_{2 n}$.

Proposition 7 Let G be a connected tricritical graph, then we have:

1. If G is bicritical, then $\delta(G) \geq 4$.
2. If G is not bicritical, then $\delta(G)=2$ or $\delta(G) \geq 4$.

References

[1] R.C. Brigham, P.Z. Chinn, R.D. Dutton, Vertex domination-critical graphs, Networks 18 (1988) 173?179.
[2] R.C.Brigham, T.W. Haynes, M.A. Henning, D.F. Rall, Bicritical domination, Discreat mathematics, 305 (2005) 18-32.
[3] O. Favaron, D. Sumner, E. Wojcicka, The diameter of domination-critical graphs, J. Graph Theory, 18 (1994) 723-724.
[4] D.B. West, Introduction to Graph Theory (Second Edition). Prentice Hall USA 2001.

