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Abstract

In this survey talk we shall overview some recent results about the
crossing number of graphs. The planar crossing number as well as crossing
numbers for other surfaces will be considered. Two of the subjects are
presented in more details in this note.

1 Introduction

Crossing number minimization is one of the fundamental optimization problems
in the sense that it is related to various other widely used notions. Besides its
mathematical interest, there are numerous applications, most notably those in
VLSI design [2, 8, 9], in combinatorial geometry and even in number theory,
see, e.g, [17]. We refer to [10, 15] and to [18] for more details about diverse
applications of this important notion.

A drawing of a graph G is a representation of G on some surface, usually on
the Euclidean plane R2, where vertices are represented as distinct points and
edges by simple polygonal arcs joining points that correspond to their endver-
tices. A drawing is clean if the interior of every arc representing an edge contains
no points representing the vertices of G. If interiors of two arcs intersect or if
an arc contains a vertex of G in its interior we speak about crossings of the
drawing. More precisely, a crossing of a drawing D is a pair ({e, f}, p), where e
and f are distinct edges and p ∈ R2 is a point that belongs to interiors of both
arcs representing e and f in D. If the drawing is not clean, then the arc of an
edge e may contain in its interior a point p ∈ R2 that represents a vertex v of
G. In such a case, the pair ({v, e}, p) is also referred to as a crossing of D.
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The number of crossings of D is denoted by cr(D) and is called the crossing
number of the drawing D. The crossing number cr(G) of a graph G is the
minimum cr(D) taken over all clean drawings D of G in the plane. When
each edge e of G has a weight we ∈ N, the weighted crossing number wcr(D)
of a clean drawing D is the sum

∑
we · wf over all crossings ({e, f}, p) in D.

The weighted crossing number wcr(G) of G is the minimum wcr(D) taken over
all clean drawings D of G. Of course, if all edge-weights are equal to 1, then
wcr(G) = cr(G).

We can define the crossing number of a graph for any given surface S. In
that case, we consider clean drawings D in S and define crS(G) as the minimum
cr(D) taken over all clean drawings D of G in S.

2 Near-planar graphs

A nonplanar graph G is near-planar if it contains an edge e such that G − e is
planar. Such an edge e is called a planarizing edge. It is easy to see that near-
planar graphs can have arbitrarily large crossing number. However, it seems
that computing the crossing number of near-planar graphs should be much easier
than in unrestricted cases. This is supported by a less known, but particularly
interesting result of Riskin [13], who proved that the crossing number of a 3-
connected cubic near-planar graph G can be computed easily as the length of
a shortest path in the geometric dual graph of the planar subgraph G − x − y,
where xy ∈ E(G) is the edge whose removal yields a planar graph. Riskin
asked if a similar correspondence holds in more general situations, but this was
disproved by Mohar [12] (see also [6]). Another relevant paper about crossing
numbers of near-planar graphs was published by Hliněný and Salazar [7].

Several generalizations of Riskin’s result are indeed possible. Cabello and
Mohar [12, 4] provided efficiently computable upper and lower bounds on the
crossing number of near-planar graphs in a form of min-max relations. These
relations can be extended to the non-3-connected case and even to the case of
weighted edges. As far as we know, these results are the first of their kind in the
study of crossing numbers. It is shown that they generalize and improve some
known results and we foresee that generalizations and further applications are
possible.

On the other hand, Cabello and Mohar [4] showed that computing the cross-
ing number of weighted near-planar graphs is NP-hard. This discovery is a
surprise and brings more questions than answers.

Let G0 be a plane graph and let x, y be two of its vertices. A simple (polyg-
onal) arc γ : [0, 1] → R2 is an (x, y)-arc if γ(0) = x and γ(1) = y. If γ(t) is
not a vertex of G0 for every t, 0 < t < 1, then we say that γ is clean. For an
(x, y)-arc γ we define the crossing number of γ with G0 as

cr(γ,G0) = |{t | γ(t) ∈ G0 and 0 < t < 1}|. (1)

This definition extends to the weighted case as follows. If the graph G0 is
weighted and the edge xy realized by an (x, y)-arc γ also has weight wxy, then
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each crossing of γ with an edge e contributes wxy ·we towards the value cr(γ,G0),
and each crossing ({v, xy}, p) of xy with a vertex of G0 contributes 1 (indepen-
dently of the edge-weights).

Using this notation, we define the dual distance

d∗(x, y) = min{cr(γ,G0) | γ is a clean (x, y)-arc}.

We also introduce a similar quantity, the facial distance between x and y:

d′(x, y) = min{cr(γ,G0) | γ is an (x, y)-arc}.

It should be observed at this point that the value d′(x, y) is independent of
the weights – since all weights are integers, we can replace each crossing of an
edge with a crossing through an incident vertex and henceforth replace weight
contributions simply by counting the number of crossings.

Let G∗
x,y be the geometric dual graph of G0 − x − y. Then d∗(x, y) is equal

to the distance in G∗
x,y between the two vertices corresponding to the faces of

G0 − x − y containing x and y. Of course, in the weighted case the distances
are determined by the weights of their dual edges. This shows that d∗(x, y)
can be computed in linear time by using known shortest path algorithms for
planar graphs. Similarly, one can compute d′(x, y) in linear time by using the
vertex-face incidence graph (see [11]).

Clearly, d′(x, y) ≤ d∗(x, y). Note that d∗ and d′ depend on the embedding
of G0 in the plane. However, if G0 is (a subdivision of) a 3-connected graph,
then this dependency disappears since G0 has essentially a unique embedding.
To compensate for this dependence, we define d∗

0(x, y) (and d′0(x, y)) as the
minimum of d∗(x, y) (resp. d′(x, y)) taken over all embeddings of G0 in the
plane.

The following proposition is clear from the definition of d∗:

Proposition 2.1 If G0 is a weighted planar graph and x, y ∈ V (G0), then
cr(G0 + xy) ≤ d∗0(x, y).

This result shows that the value d∗
0(x, y) is of interest. Gutwenger, Mutzel,

and Weiskircher [6] provided a linear-time algorithm to compute d∗0(x, y). Ca-
bello and Mohar [12, 4] study d∗0(x, y) from a combinatorial point of view and
obtain a min-max characterization that results very useful.

Riskin [13] proved the following strengthening of Proposition 2.1 in a special
case when G0 is 3-connected and cubic:

Theorem 2.2 ([13]) If G0 is a 3-connected cubic planar graph, then cr(G0 +
xy) = d∗

0(x, y).

Riskin asked in [13] if Theorem 2.2 extends to arbitrary 3-connected pla-
nar graphs. In [12] it is shown that this is not the case: for every integer k,
there exists a 5-connected planar graph G0 and two vertices x, y ∈ V (G0) such
that cr(G0 + xy) ≤ 11 and d∗

0(x, y) ≥ k. See also Gutwenger, Mutzel, and
Weiskircher [6] for an alternative construction.
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However, several extensions of Theorem 2.2 are possible. In particular, it
is shown in [4] how to deal with graphs that are not 3-connected, and what
happens when we allow vertices of arbitrary degrees.

Theorem 2.3 (Cabello and Mohar [4]) If G0 is a weighted planar graph
and x, y ∈ V (G0), then

d′
0(x, y) ≤ cr(G0 + xy) ≤ d∗

0(x, y).

If G0 is a cubic graph, then for every planar embedding of G0, d′(x, y) =
d∗(x, y). Therefore, d′

0(x, y) = d∗
0(x, y), and Theorem 2.3 implies Theorem 2.2.

Theorem 2.3 is also the main ingredient to improve the approximation factor
in the algorithm of Hliněný and Salazar [7]; see Corollary 2.6.

A key idea in the proof is to show that d∗
0(x, y) (respectively d′0(x, y)) is

closely related to the maximum number of edge-disjoint (respectively vertex-
disjoint) cycles that separate x and y. The notion of the separation has to be
understood in a certain strong sense. This result yields a dual expression for
d∗0 (respectively d′0) and is used to show that d∗

0(x, y) is closely related to the
crossing number of G0 + xy, while d′

0(x, y) is in the same way related to the
minor crossing number, mcr(G0 + xy), a version of the crossing number that
works well with minors; see Bokal et al. [3].

As a complete surprise, Cabello and Mohar [4] proved that computing the
crossing number of weighted near-planar graphs is NP-hard. Their reduction
uses weights that are not polynomially bounded, and therefore it does not imply
NP-hardness for unweighted graphs.

Despite examples and despite NP-hardness result for the weighted case, the
following question may still have a positive answer:

Problem 2.4 ([4]) Is there a polynomial time algorithm which would deter-
mine the crossing number of G0+xy if G0 is an unweighted 3-connected planar
graph?

As a corollary Cabello and Mohar [4] get a generalization of Riskin’s Theorem
2.2.

Corollary 2.5 If the graph G0 − x − y has maximum degree 3, then

cr(G0 + xy) = d′
0(x, y) = d∗

0(x, y).

In particular, the crossing number of G0 + xy is computable in linear time.

Another corollary is an approximation formula for the crossing number of
near-planar graphs if the maximum degree is bounded.

Corollary 2.6 If the graph G0−x−y has maximum degree ∆, then d′0(x, y) ≤
cr(G0 + xy) ≤ ∆

2 d′
0(x, y).
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Corollary 2.6 is an improvement of a theorem of Hliněný and Salazar [7] who
proved analogous result with the factor ∆ instead of ∆/2.

A graph G is said to be d-apex if G has a vertex v of degree at most d such
that G− v is planar. Let us observe that every near-planar graph is essentially
2-apex (subdivide the “non-planar” edge).

Problem 2.7 ([4]) Is there a result similar to Corollary 2.5 for 3-apex cubic
graphs?

3 Crossing sequences

Planarity is ubiquitous in the world of structural graph theory, and perhaps the
two most obvious generalizations of this concept—crossing number, and em-
beddings in more complicated surfaces—are topics which have been thoroughly
researched. Despite this, relatively little work has been done on the common
generalization of these two: crossing numbers of graphs drawn on surfaces. This
subject seems to have been introduced in [16], and studied further in [1]. Fol-
lowing these authors, we define for every nonnegative integer i and every graph
G, the ith crossing number, cri(G), (and also the ith nonorientable crossing
number, c̃ri(G)) to be the minimum number of crossings in a drawing of G on
the orientable (nonorientable, respectively) surface of genus i. Observe that
cri(G) = 0 (respectively, c̃ri(G) = 0) if and only if i is greater or equal to the
genus (resp., nonorientable genus) of G. This gives, for every graph G, two
finite sequences of integers, (cr0(G), cr1(G), . . . , 0) and (c̃r0(G), c̃r1(G), . . . , 0),
both of which terminate with a single zero. The first of these is the orientable
crossing sequence of G, the second the nonorientable crossing sequence of G.

A natural question is to characterize crossing sequences of graphs. This is
the focus of both [16] and [1]. If we are given a drawing of a graph in a surface
S with at least one crossing, then modifying our surface in the neighborhood
of this crossing by either adding a crosscap or a handle gives rise to a drawing
of G in a higher genus surface with one crossing less. It follows from this that
every orientable and nonorientable crossing sequence is strictly decreasing until
it hits 0. This necessary condition was conjectured to be sufficient in [1].

Conjecture 3.1 (Archdeacon, Bonnington, and Širáň)
If (a1, a2, . . . , 0) is a sequence of nonnegative integers which strictly decreases
until 0, then there is a graph whose crossing sequence (nonorientable crossing
sequence) is (a1, a2, . . . , 0).

To date, there has been very little progress on this appealing conjecture.
For the special case of sequences of the form (a, b, 0), Archdeacon, Bonnington,
and Širáň [1] constructed some interesting examples for both the orientable and
nonorientable cases.

Theorem 3.2 (Archdeacon, Bonnington, and Širáň) If a and b are inte-
gers with a > b > 0, then there exists a graph G with nonorientable crossing
sequence (a, b, 0).
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It has been believed by some that such a result cannot hold for the orientable
case. For the most extreme special case (N,N−1, 0), where N is a large integer,
Salazar asked [14] if this sequence could really be the crossing sequence of a
graph. The following quote of Dan Archdeacon illustrates why such crossing
sequences are counterintuitive:

If G has crossing sequence (N,N − 1, 0), then adding one handle
enables us to get rid of no more than a single crossing, but by adding
the second handle, we get rid of many. So, why would we not rather
add the second handle first?

Recently, DeVos, Mohar and Šamal [5] proved a theorem that is an analogue
of Theorem 3.2 for the orientable case, and its special case a = N , b = N − 1
resolves Salazar’s question [14].

Theorem 3.3 (DeVos, Mohar and Šamal [5]) If a and b are integers with
a > b > 0, then there exists a graph G whose orientable crossing sequence is
(a, b, 0).

Quite little is known about constructions of graphs for more general crossing
sequences. Next we shall discuss the only such construction we know of. Con-
sider a sequence a = (a0, a1, . . . , ag) and define the sequence (d1, . . . , dg) by the
rule di = ai−1−ai. If a is the crossing sequence of a graph, then, roughly speak-
ing, di is the number of crossings which can be saved by adding the ith handle.
It seems intuitively clear that sequences for which d1 ≥ d2 ≥ · · · ≥ dg should
be crossing sequences, since here we receive diminishing returns for each extra
handle we use. Indeed, Širáň [16] constructed a graph with crossing sequence a
whenever d1 ≥ d2 ≥ · · · ≥ dg.

Constructing graphs for sequences which violate the above condition is rather
more difficult. For instance, it was previously open whether there exist graphs
with crossing sequence (a, b, 0) where a/b is arbitrarily close to 1. The most
extreme examples are due to Archdeacon, Bonnington and Širáň [1] and have
a/b approximately equal to 6/5. Although Theorem 3.3 gives a graph with every
possible crossing sequence of the form (a, b, 0), we don’t know what happens for
longer sequences. In particular, it would be nice to resolve the following problem
which asks for graphs where the first s handles save only an epsilon fraction of
what is saved by the s + 1st handle.

Problem 3.4 ([5]) For every positive integer s and every ε > 0, construct a
graph G for which cr0(G) − crs(G) ≤ ε (crs(G) − crs+1(G)).

For graph embeddings, the genus of a disconnected graph is the sum of the
genera of its connected components. For drawing, this situation is presently
unclear. If we have a graph which is a disjoint union of G1 and G2, then we can
always “use part of the surface for G1 and the other part for G2”, leading to

cri(G1 ∪ G2) ≤ min
j

(
crj(G1) + cri−j(G2)

)
.
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To the best of our knowledge, this inequality might always be an equality. More
generally DeVos, Mohar and Šamal posed the following problem.

Problem 3.5 ([5]) Let G be a disjoint union of the graphs G1 and G2, and let
S be a (possibly nonorientable) surface. Is there an optimal drawing of G on
S, such that no edge of G1 crosses an edge of G2?

This problem is trivially true when S is the plane. It is shown in [5] that it
also holds when S is the projective plane.

Very recently, progress towards a solution of Problem 3.5 has been annonced.
Two groups made progress in the case of the Klein bottle, while the authors of
this note report some advance in the case of the torus.

References

[1] Dan Archdeacon, C. Paul Bonnington, and Jozef Širáň, Trading crossings
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