Tenacity and Spectrum of a Graph

Dara Moazzami*

The tenacity of a graph $G, T(G)$, is defined by $T(G)=\min \left\{\frac{|S|+\tau(G-S)}{\omega(G-S)}\right\}$, where the minimum is taken over all vertex cutsets S of $V(G), \omega(G-S)$ be the number of components of $G-S$ and $\tau(G-S)$ be the number of vertices in the largest component of the graph induced by $G-S$.

The largest number of vertices in any such set is called the vertex independence number of G and is denoted by $\alpha(G)$.
k-tree of a connected graph G is a spanning tree with maximum degree at most k. In this paper we show that if $T(G) \geq \frac{\tau(G-S)}{\omega(G-S)}+\frac{1}{k-2}$, for any subset S of $V(G)$, with $k \geq 3$, then G has a k-tree. Also we choose the spectrum of a graph, G_{n}^{m}, which is n-connected and we calculate the tenacity of G_{n}^{m}.

Theorem 1. If

$$
\begin{equation*}
T(G) \geq \frac{\tau(G-S)}{\omega(G-S)}+\frac{1}{k-2}, \quad \text { with } k \geq 3 \tag{1}
\end{equation*}
$$

for any vertex cutset S of G, then G has a k-tree.
The Tenacity of G_{n}^{m}. We may assume G_{n}^{m} is labeled by $0,1,2, \cdots, m$. Let n be even, $n=2 r$ and two vertices i, j are adjacent, if $i-r \leq j \leq r$ (where addition is taken modulo m). Now let n and m be odd, $(n>1)$. Let $n=2 r+1$, $(r>0)$. Then $G_{2 r+1}^{m}$ is constructed by first drawing $G_{2 r}^{m}$, and adding edges joining vertex i to veretex $i+\frac{m+1}{2}$ for $1 \leq i \leq \frac{m-1}{2}$. Note that vertex 0 is adjacent to both vertices $\frac{m-1}{2}$ and $\frac{m+1}{2}$.

THEOREM 2. Graph G_{n}^{m} is n-connected.
THEOREM 3. $T\left(G_{2 r}^{m}\right)=r+\frac{1+\left\lceil\frac{s}{k}\right\rceil}{k}$.
Through the rest of this paper we will let $n=2 r$ or $n=2 r+1$ and $m=k(r+1)+s$ for $0 \leq s \leq r+1$. So we can indicate that $m \equiv s \bmod (r+1)$ and $k=\left\lfloor\frac{m}{r+1}\right\rfloor$. Also we assume that the graph G_{n}^{m} is not complete, $n+1<m$.

THEOREM 4. Let G_{n}^{m} be the graph with m and n odd, $n=2 r+1$, then

$$
r+\frac{1+\left\lceil\frac{s}{k}\right\rceil}{k} \leq T\left(G_{n}^{m}\right) \leq\left\{\begin{array}{l}
r+\frac{s+1}{k} \\
\frac{k r+s+2}{k-1} \quad \text { if } m \not \equiv 1 \bmod (n+1) \\
\hline \bmod (n+1)
\end{array}\right.
$$

[^0]LEMMA 5. Let G_{n}^{m} be the graph with m odd, $n=2 r+1, r \geq 2,1<s<r+1$, $s<k$, and k is even. Then there is an cutset A with $k r+1$ elements such that number of components is $\omega\left(G_{n}^{m}-A\right)=k$, and the largest component is $\tau\left(G_{n}^{m}-A\right)=2$.

THEOREM 6. Let G_{n}^{m} be the graph with $n=2 r+1$, m odd, k even, $k>2,1<s<$ $r+1$ and $s<k$. Then

$$
r+\frac{2}{k} \leq T\left(G_{n}^{m}\right) \leq r+\frac{3}{k} .
$$

LEMMA 7. Let G_{n}^{m} be the graph with $n=2 r+1$, m odd, k even, $k>2,1<s<r+1$, and $s>k$ where $s=a k+b$, for some a and $b, 0<b<k$, then

$$
r \geq \begin{cases}5 & \text { for a odd } \\ 9 & \text { for a even. }\end{cases}
$$

Note that if r is even then the bounds in the above lemma can be increased by 1 .
LEMMA 8. Let G_{n}^{m} be the graph with $n=2 r+1$, m odd, k even, $k>2,1<s<r+1$ and $s>k$ where $s=a k+b$, for some a and $b, 0<b<k, a+1<\frac{r}{2}$.

Finally, we have the following theorem:
THEOREM 9. Let G_{n}^{m} be the graph with $n=2 r+1$, m odd, k even, $k>2,1<s<$ $r+1$ and $s>k$. Write $s=a k+b$ for some a and b and $k=2 q$ for some q. Then

$$
r+\frac{a+2}{k} \leq T\left(G_{n}^{m}\right) \leq \begin{cases}r+\frac{a+2+z}{k}, & \text { where } \quad z=\frac{a+\frac{b}{2}-1}{q-1} \\ r+\frac{a+3+z}{k} & \text { where } z=\left\lfloor\frac{a+\frac{b}{2}-1}{q-1}\right\rfloor .\end{cases}
$$

References

[1] Cozzens M. B, D. Moazzami, S. Stueckle, The tenacity of a graph, Graph Theory, Combinatorics, and Algorithms (Yousef Alavi and Allen Schwenk eds.) Wiley, New York, (1995), 1111-1112.
[2] S. A. Choudum, S. A. and N. Priya, Tenacity of complete graph products and grids, Networks 34 (1999), no. 3, 192-196.
[3] S. A. Choudum and N. Priya, Tenacity-maximum graphs, J. Combin. Math. Combin. Comput. 37 (2001), 101-114.
[4] Harary, F., The maximum connectivity of a graph, Proc. Nat. Acad. Sci, USA, Vol. 48, (1962), 1142-1146.
[5] Moazzami, D., Vulnerability in Graphs - a Comparative Survey, J. Combin. Math. Combin. Comput. 30 (1999), 23-31.)
[6] Moazzami, D., Stability Measure of a Graph - a Survey, Utilitas Mathematica, 57 (2000), 171-191.
[7] Moazzami, D., On Networks with Maximum Graphical Structure, Tenacity T and number of vertices p, J. Combin.Math. Combin. Comput. 39 (2001).

[^0]: *University of Tehran, Department of Engineering Science, Faculty of Engineering, P.O.Box: 14395-195, Tehran, IRAN. E-mail: dmoazzami@ut.ac.ir

