Reversing a polyhedral surface by origami-deformation

Hiroshi Maehara*

A flexatube is a puzzle invented by Arthur H. Stone in 1939. It is made from a cardboard cubical box by removing a pair of opposite faces, and then by making creases on each square face along the pair of diagonals. A flexatube can be turned inside out by a series of folds along the edges of the squares and the creased diagonals. To turn a flexatube inside out is an interesting and tantalizing puzzle.

Stimulated by the flexatube, I sought other interesting variations of flexatube, and found one in 2006, which I called a rhombotube. It is obtained from a hollow rhombohedron whose six faces are rhombi with interior angles 60° and 120° by removing a pair of opposite faces, and then, by making creases along the pairs of diagonals of the remaining four faces. It can be also turned inside out by a series of folds along the creases and edges. To reverse a rhombohedron is a challenging puzzle. A solution I found is exquisite and complicated.

Motivated by these reversible tubes, I started to consider the reversibility for general polyhedral surfaces. A polyhedral surface M is a 2-dimensional manifold in R^{3} made from a finite number of cardboard polygons by attaching along their edges. The materials, cardboard polygons, are supposed to be very thin, and their thickness is regarded to be 0 . Each polygon of M is called simply a face of M. A subdivision of M is a polyhedral surface obtained from M by subdividing faces of M into small polygons.

An origami-deformation of a polyhedral surface is a deformation that corresponds to a series of folds along the edges or creases:
Definition. An origami-deformation of a polyhedral surface $M \subset R^{3}$ is a continuous motion $f_{t}: M \rightarrow R^{3}(0 \leq t \leq 1)$ of M such that (1) f_{0} is the inclusion map, (2) for each face of M, the induced motion of the face is a rigid motion, and (3) two faces may touch or overlap during the motion, but they never go through each other.

Note that since two faces may overlap, $f_{t}: M \rightarrow R^{3}$ is not always an embedding for every $t \in[0,1]$. However, the condition (3) implies that if $f_{1}: M \rightarrow R^{3}$ is an embedding, then M can be changed to $f_{1}(M)$ by a deformation through 'topological embeddings', that is, the inclusion map f_{0} and the embedding f_{1} are isotopic.

To see effects of origami-deformations, consider, for example, the polyhedral surface \triangleq obtained by subdividing a unit square with the pair of diagonals. It can be turned by origami-deformation into a 2 -sheet-triangle \triangle (by folding along the horizontal diagonal). Then, since the thickness of the resulting 2 -sheet-triangle

[^0]is zero, it can be turned, by folding the two sheets together along the (superposed) median, into a 4 -sheet-triangle Δ.

The reversibility for a general polyhedral surface is defined as follows.
Definition. A polyhedral surface M is called reversible if there is an origamideformation $f_{t}: M \rightarrow R^{3}(0 \leq t \leq 1)$ such that $f_{1}(M)$ is a mirror image of M with respect to a plane, and the correspondence $M \ni x \mapsto f_{1}(x) \in f_{1}(M)$ is the reflection map. If a subdivision M^{\prime} of M is reversible, then M is called subdivision-reversible.

Concerning the reversibility of general polyhedral surfaces, the following holds. (Note that under the above definition, one may consider the reversibility even for a non-orientable surface.)

THEOREM 1. If a polyhedral surface contains a 2-component-link (α, β) with nonzero linking number, then the surface is not subdivision-reversible.

It is known (Conway and Gordon 1983, Sachs 1983) that every embedding of the complete graph K_{6} in R^{3} contains a 2-component link with nonzero linking number. Since K_{6} is embeddable in the Möbius band, and also embeddable in any orientable polyhedral surface of positive genus, the next corollary follows.

COROLLARY 2. Every subdivision-reversible polyhedral surface is homeomorphic to a subset of a 2-dimensional sphere.

THEOREM 3. If a polyhedral surface has an interior vertex at which the sum of face angles is less than 2π, then the surface is not subdivision-reversible.

Thus, an open box (that is, a rectangular tube closed on the bottom) is not subdivision-reversible because the sum of face angles at each bottom vertex is equal to $3 \pi / 2$, which is less than 2π.

Let M be a polyhedral surface and F be a face of M. Cut out a rectangle from F and attach a rectangular tube at the hole along the boundary of the rectangular hole, perpendicularly to the face. Then, a new polyhedral surface is obtained. This new surface is called a surface obtained from M by a tube-attachment operation.

THEOREM 4. If M is subdivision-reversible, then every polyhedral surface obtained from M by applying tube-attachment operations one after another, is subdivisionreversible.

Some examples and problems will be also given in the talk.

[^0]: *Faculty of Education, Ryukyu University, Nishihara, Okinawa, 903-0213 Japan. E-mail: hmaehara@edu.u-ryukyu.ac.jp

