
Generalized Polyhedral Suspensions 

 

Abstract of proposed lecture at the 20
th

 Workshop on Topological Graph Theory in Yokohama 

 

Serge Lawrencenko (!"# ) * 

 
Department of Mathematics 

Moscow Institute of Steel and Alloys 

4 Leninsky Prospect 

Moscow 119235, Russia 

Email: lawrencenko@hotmail.com 

 

* will speak. 

 

Niek Sanders 

 
Digital Imaging and Remote Sensing (DIRS) Laboratory 

Chester F. Carlson Center for Imaging Science 

Rochester Institute of Science and Technology 

54 Lomb Memorial Drive 

Rochester, NY 14623, USA 

Email: sanders@cis.rit.edu 

 

 

1. Introduction 

 

We have discovered a new class of polyhedra — bipyramids of arbitrary genus. We describe our 

construction, present unfoldings of bipyramids of genus 1 and 2, with the rules of gluing.  

In the lecture we will also present some of the current interesting directions in our research as 

well as some possible future directions. Our work on those is currently in progress and we here also 

preview some of the results based on our recent work. In particular, we have discovered a new regular 

polyhedron as a torus type bipyramid geometrically re-embedded from Euclidean space  into  

(Section 6). Furthermore, in Section 4 we obtain as a byproduct a reinforcement of a classical theorem [R] 

of Ringeisen which is in fact a plain corollary of our construction (Theorem 4).  

Considered in this lecture are polyhedra with triangular faces, embedded in Euclidean space. 

Recall that the term “embedding” excludes self-intersections — that is, the triangles realizing the faces 

must have disjoint interiors. (In the case where a polyhedron has nontriangular faces, diagonals can be 

added to triangulate them.) In what follows, by a triangle we will mean a triangular face of a polyhedron. 

A -complex will mean an -dimensional simplicial complex. Associated with a polyhedron  

is its geometric 2-complex, ; it consists of the vertices, edges, and triangles of . The 

corresponding topological 2-complex is referred to as a topological 2-complex of . The term “2-

complex of ” can carry both meanings, topological and geometric. 

By   we will denote a closed, compact, orientable, 2-dimensional surface of genus . When 

the underlying space of  is homeomorphic to  , we call  a polyhedron of genus . In 

particular, polyhedra of genus 0 and 1 are sphere type and torus type polyhedra, respectively. 

A suspension is a polyhedron in which all but two vertices lie in one plane, the equatorial plane. 

The equatorial 2-complex of a suspension is the 2-complex consisting of the equatorial vertices, edges, 

and triangles of the suspension. The two vertices not in the equatorial plane are located above and below 

that plane, respectively. They are designated as the north pole, N, and the south pole, S, respectively. 

Especially, in this lecture we are concerned with bipyramids — that is, polyhedral suspensions with the 

additional restriction that both N and S be adjacent to each vertex in the equatorial plane. 

It is obvious how to generate sphere type bipyramids. They have a circuit of arbitrary length as 

the equatorial 2-complex (it degenerates to a 1-complex in this simplest case). The existence of 

bipyramids of higher genera, , is not obvious at all. For , a torus type bipyramid, a construction 

can be found in [BL]. (Moreover, it is shown in [BL] that many triangulations of the torus with few 
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vertices can be realized as polyhedral suspensions.) A number of geometers have been very interested in 

whether there exist polyhedral suspensions of topological types other than the sphere and the torus. We 

will answer this question affirmatively, establishing the existence of generalized polyhedral suspensions. 

Our construction is presented in Section 3. We discuss the relationship between suspensions and 

2-complex planarity in Section 2. We discuss properties of bipyramids in Section 4 and give adequate 

instructions for assembling their models in Section 5. We give concluding remarks on our plans for 

current and prospective research in Section 6. 

 

2. Planarity of 2-complexes  

 

The topic which we introduce in this section is closely related to the structure of suspensions as we will 

see shortly.  

A topological -complex , , is said to be topologically planar if it can be embedded 

in the plane. Recall that the term “embedded” means that the simplexes of are represented by 

interiorly disjoint curves (1-siplexes) and triangular regions (2-simplexes) in the plane.  is said to be 

geometrically planar if it is topologically planar and can be realized by a geometric 2-complex in the 

Euclidean plane  – that is, with all its 1-simplexes represented by straight line segments. It should be 

stressed that we admit unbounded triangles (the outer region), so any 2-complex whose underlying space 

is homeomorphic to the sphere is topologically and geometrically planar. 

Topologically planar 1-complexes have been characterized by Kuratowski’s theorem [K]. 

Furthermore, Fáry [F] proved that each topologically planar 1-complex is geometrically planar. We now 

state and prove a 2-dimensional analog of Fáry’s theorem. 

 

Theorem 1. A 2-complex  is topologically planar if and only if  is geometrically planar. 

 

Proof: In fact, we need to prove that the topological planarity of  implies its geometric planarity. We 

give here the proof for the case in which the graph  of  is 3-connected. By Fáry’s theorem [F], 

we can embed the graph  in the plane with all of its edges represented by straight line segments. 

On the other hand, by Whitney’s theorem [W], that graph embedding is combinatorially unique up to 

what region is chosen as the outer one. Hence, thanks to the topological planarity of , adding the 2-

simplexes to that graph embedding won’t cause any impediments for 2-dimensional planarity. ! 

 

Observe that a topological 2-complex  is the 2-complex of some suspension if and only if: 

 

(i) the underlying space of  is homeomorphic to an orientable, closed surface,  

and 

(ii) there exists a planar subcomplex of  that contains all but two vertices of . 

 

It is not generally true that a 2-complex is planar whenever its graph is planar. As a 

counterexample, take a sphere type bipyramid whose equatorial graph is a circuit of length 3 and fill that 

circuit with a 2-simplex. The so-obtained 2-complex is non-planar. Note that its graph is planar and has 

connectivity equal to 3. 

 

Theorem 2. A 2-complex is  planar if its graph is 4-connected and planar. 

 

Proof: Firstly embed the graph of the 2-complex in the plane with all of its edges represented by straight 

line segments. This is possible by Fáry’s theorem [F]. Now add the 2-simplexes of the 2-complex. By the 

4-connectivity hypothesis, there are no separating circuits of length 3, whence there are no impediments 

to embeddability, and the statement follows. ! 

 

The star of , denoted st , in  is defined to be the minimum subcomplex of  that 

contains each simplex incident with . 

We now conjecture two 2-complex planarity criteria. 
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Conjecture 1. A 2-complex  is planar if and only if its graph  is planar and the star of each 

vertex in  is planar. 

 

Conjecture 2. A 2-complex  is planar if and only if the graph of the 2-complex obtained from  by 

stellar subdivision of each 2-simplex is planar. 

 

It would be also very interesting to characterize planar 2-complexes in terms of forbidden 2-

complexes. This would be a 2-dimensional analog of Kuratowski’s theorem [K].  

 

3. Construction 

 

In this section we constructively establish the existence of generalized polyhedral suspensions — more 

specifically, bipyramids of arbitrary genus . We will denote them by . 

Observe that the underlying space of a 2-complex  is isomorphic to a closed surface if and 

only if the star of each vertex in  represents a disk (2-dimensional). This condition ensures the 

absence of singular vertices and, moreover, that each edge is incident with precisely two triangles.  

 
Figure 1. Basic equatorial template for . 

 

We now reproduce the construction [BL] for building a torus type bipyramid  with eight 

vertices. The equatorial 2-complex is shown in Figure 1, where its 2-simplexes are shaded. The two 

vertices not on the equatorial plane are the north pole N and the south pole S. These vertices are placed 

above and below the equatorial plane, respectively. We add the triangles determined by N and the edges 

of the circuit 6, 4, 5, 2, 1, 3, 6 as well as the triangles determined by S and the edges of the circuit 6, 5, 1, 

2, 3, 4, 6. Both circuits are Hamilton circuits of the equatorial graph. It can be readily verified that there 

are exactly two triangles meeting each edge and that the star of each vertex is homeomorphis to a disk. 

Therefore we have a closed, orientable surface. Using Euler’s equation, one can check that that surface is 

a torus. Therefore the so-obtained polyhedron is a torus type bipyramid. 

Now we state and prove our basic result. 

 

Theorem 3. There exists a bipyramid of genus  for each positive integer . 

 

Proof: As mentioned above, bipyramids of genus 1 are already known [BL]. So our job is to construct a 

bipyramid of genus  for a given . As the equatorial 2-complex we take  copies of the template 

of Figure 1 and link them together in cyclic order as shown in Figures 2 and 3, respectively. Those figures 

present the equatorial 2-complexes for  and , respectively. This construction generalizes for 

an arbitrary  in a natural fashion.  
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Figure 2. Equatorial 2-complex for a bipyramid  of genus 2. 

 

 
Figure 3. Equatorial 2-complex for a bipyramid  of genus 3. 

 

Now we proceed to add nonequatorial triangles to build a desired bipyramid. They are determined 

by certain equatorial edges and the vertex N or S. Our construction is general in nature, but, for 

convenience, we will explain it specifically for . For this, consider the equatorial circuits  6, 5, 7, 

9, 8, 10, 4, 2, 3, 1, 6 and 6, 4, 7, 8, 9, 10, 5, 2, 1, 3, 6 in the 2-complex of Figure 2. Note that these 

circuits share two edges,  and . (Those circuits also appear in Figure 7.) To complete 

construction of the bipyramid , as nonequatorial triangles we choose the triangles determined by the 

pole N and the edges of  as well as the triangles determined by the pole S and the edges of . 

Observe that, for an arbitrary ,  and  satisfy each of the following three conditions.   

 

Condition 1: Each equatorial edge either: 

 

(a) appears as a side of exactly two adjacent equatorial triangles,  

or 

(b) appears as a side of exactly one equatorial triangle and in either  or , but not both, 

or 

(c) does not appear as a side of any equatorial triangle but appears in both  and . 

 

Condition 2: Both  and  are Hamilton circuits of the equatorial graph — that is, both span all 

vertices of the equatorial 2-complex. 

 

Condition 3: At each equatorial vertex , the circuits  and  are not placed in either way as shown 

in Figure 4. 
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Figure 4. Forbidden situations where singular vertices occur. 

 

Such a pair of circuits can be obviously found in the equatorial 2-complex for an arbitrary . 

 
Figure 5. Stars of vertices 2 and 3. 

 

Conditions 1 and 2 ensure that each edge appears as a side of precisely two triangles of the 

polyhedron constructed. Furthermore, Condition 3 ensures the absence of singular vertices in the 

equatorial plane. For example, consider the equatorial vertices 2 and 3 in Figure 2. Figure 5(a) shows the 

triangles as they appear in cyclic order around the vertex 2. Those triangles form a disk, which means that 

st  is a disk and therefore the vertex 2 is a nonsingular vertex. Similarly, Figure 5(b) shows the 

triangles as they appear around the equatorial vertex 3. Again, the triangles form a disk, which means that 

the vertex 3 is nonsingular. Finally, the nonsingularity of the nonequatorial vertices, N and S, is 

guaranteed by Condition 2. 

Therefore, what we have constructed is indeed a polyhedron representing a closed surface and, 

moreover, that polyhedron is a bipyramid. This specific polyhedron constructed is denoted by . 

Finally, by construction, the polyhedron is indeed embedded in  and therefore represents an orientable 

surface. 

It remains to show that the genus of  is equal to  — the number of templates. To accomplish 

this, we shall now show that inserting one template in the equatorial 2-complex increments the genus by 1, 

for . It is a matter of routine counting to calculate the number of vertices , edges , and 

triangles  of  in terms of : 

 

, , and . 

 

Then, by Euler’s equation, , the genus of  is indeed is equal to . The proof is 

complete. ! 

 

4. Properties of bipyramids  

 

Let us begin with a topological question for surfaces: What is the minimum number of disks needed to cut 

out from  so that the resulting surface could stretch in the plane without breaking or overlapping? For 

a simple topological reason, removing only one disk is not enough, for . Therefore the answer to 
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the question is 2 because the removal of the stars of the two poles from  leads to a planar (equatorial) 

2-complex. 

Interestingly, the genus of the graph of  is equal to , while its thickness is equal to 2 for any 

. It would be interesting to find the chromatic and crossing numbers of the graphs of  as well as 

other important invariants. 

It is also interesting to observe the properties of the equatorial graphs, denoted , of . 

More specifically, these graphs are planar for any , but the graph  2-cell embeds in , 

whence . Hence, by a theorem of Nordhaus-Stewart-White [NSW], 

the graph  is 2-cell embeddable in each surface in a row from  through to . As a graph-

theoretical byproduct, we therefore re-discover the existence of planar graphs of arbitrarily large 

maximum genus. This is a classical theorem [R] of Ringeisen. We can even strengthen Ringeisen’s 

theorem. For that, define the polygonal maximum genus of a graph  to be the maximum  such that 

 can 2-cell embed on  without repeated vertices on the boundary of each 2-cell. Then our result is as 

follows. 

 

Theorem 4. There exist planar graphs of arbitrarily large polygonal maximum genus. 

 

For more properties, observe that the graph of each  is a Hamilton graph and that each  

corresponds to an irreducible triangulation of  in the sense of Negami-Lawrencenko [LN]. Also 

observe that, in the case in which the poles of  are placed symmetrically with respect to the equatorial 

plane, the reflection with respect to that plane gives another suspension which is the reverse of the 

original  and is congruent to . In other words, such a reflection takes the underlying surface  

inside out. It may be interesting to look into this phenomenon along the lines of Maehara’s approach [M]. 

 

5. Physical models and computer images 

 

In this section we show unfoldings of the bipyramids and  constructed in the preceding section and 

describe how to build their models. Their cardboard models will be demonstrated in the lecture as well as 

computer-generated images. 

 

 
 

Firstly, we give instructions for constructing the torus type bipyramid . Draw the equatorial 2-

complex depicted in Figure 1 on cardboard, with measurements as indicated in Table 1. Cut out the shape 

bounded by the circuit 1, 3, 2, 5, 1. Then remove and discard the fragment bounded by the circuit 3, 4, 5, 

6, 3. What remains is the equatorial 2-complex for  with the edges  and  removed.   
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Figure 6. Placement of templates around N and S for g = 1. 

 

Secondly, we paste the triangles connecting the equatorial 2-complex to the poles N and S. These 

triangles are taken from the set of four templates, named A, B, C, and D, with measurements as indicated 

in Table 2. Figure 6 shows charts (a) and (b) which list the templates in cyclic order they occur around N 

and S, respectively. The columns indicate the approximate side lengths in centimeters.  

Finally, paste the triangles listed in Table 2 and Figure 6 to the equatorial 2-complex using scotch 

tape. Also tape together the triangles along their common sides. With all of the triangles pasted, we obtain 

a complete model of . 

 
The process of building  is similar to the process for the torus type.  

On one cardboard sheet, draw the equatorial 2-complex depicted in Figure 2, with measurements 

as indicated in Table 3. Then cut out the shape bounded by the circuit 6, 5, 10, 4, 6. Remove and discard 

the shapes bounded by the circuit 1, 2, 3, 6, 1, the circuit 7, 8, 10, 9, 7, and the circuit 5, 7, 4, 2, 5. This 

gives the equatorial 2-complex of  with the edges  and  removed. 

 
Figure 7. Placement of templates around N and S for g = 2. 
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The technique for attaching the triangles connecting the equatorial 2-complex to the poles is 

essentially the same as for the torus type. We now use seven triangular templates, named E, F, G, H, I, J, 

and K.  Table 4 gives their measurements. Figure 7 indicated the rules for placement of the templates. 

In addition to the cardboard models, we are going to demonstrate their computer-generated 

images on our website (currently under construction) devoted to polyhedral suspensions. In particular, it 

will present computer-generated images of  and , respectively. We have designed a computer 

program that generates bipyramidal models for a given . The program is written in the Scheme 

programming language, a descendant of the LISP language. It outputs a VRML file. (VRML is a 

computer language used to create 3D models.) 

 

6. Summary of current and prospective research 

 

In addition to Sections 2 and 4, we here very briefly address three more topics for research.  

 

4.1. Regular polyhedra. Modifying our construction of  in Section 3, we have geometrically realized a 

triangulated torus with 8 vertices as a regular polyhedron in . 

 

Theorem 5. There exists a regular toroidal polyhedron in .   

 

4.2. Rigidity and volumes of suspensions. Can we say anything about rigidity for suspensions of higher 

genera? Connelly proved [C] that the generalized volume of a non-rigid suspension is necessarily equal to 

zero. (To find the volume of  is an amusing puzzle on elementary geometry.) 

 

4.3. Enumeration of bipyramids. One can obtain more bipyramids by finding more pairs of Hamilton 

circuits satisfying Conditions 1, 2, and 3 (Section 3), in the equatorial 2-complex of  (Figures 1, 2, 3). 

It would be interesting to calculate the precise number of such pairs. Alternatively, we can calculate the 

number of bipyramids with the same graph by using an enumerative formula [CKL] of Kwak-

Lawrencenko-Chen. Then it would be interesting to compare results against each other. 
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