Generating 5-regular planar graphs

Guoli Ding ${ }^{*}$ Jinko Kanno and Jianning Su ${ }^{\dagger}$

For $k=0,1,2,3,4,5$, let \mathcal{P}_{k} be the class of k-edge-connected 5 -regular planar graphs. In this paper, graph operations are introduced that generate all graphs in each \mathcal{P}_{k}.

Operation \mathcal{O}_{1}.

Operation \mathcal{O}_{4}.

Operation \mathcal{O}_{3}.

Operation \mathcal{O}_{5}.

THEOREM 1. Every graph in \mathcal{P}_{0} can be reduced within \mathcal{P}_{0} by \mathcal{O}_{1} and \mathcal{O}_{3} to a graph for which every component is $5 K_{2}, 3 K_{2}^{L}$ or $K_{2}^{2 L}$.

THEOREM 2. Every graph G in \mathcal{P}_{1} can be reduced within \mathcal{P}_{1}
(i) to $5 K_{2}, 3 K_{2}^{L}$ or $K_{2}^{2 L}$ by $\mathcal{O}_{1}, \mathcal{O}_{3}$, and \mathcal{O}_{4}; and
(ii) to $3 K_{2}^{L}$ or $K_{2}^{2 L}$ by $\mathcal{O}_{1}, \mathcal{O}_{2}$, and \mathcal{O}_{4}, unless $G=5 K_{2}$.

THEOREM 3. Every graph in \mathcal{P}_{2} can be reduced within \mathcal{P}_{2} by $\mathcal{O}_{1}, \mathcal{O}_{2}, \mathcal{O}_{3}, \mathcal{O}_{5}$, and \mathcal{O}_{6} to $3 K_{2}^{L}$ or $5 K_{2}$.

THEOREM 4. Every graph in \mathcal{P}_{3} can be reduced within \mathcal{P}_{3} by $\mathcal{O}_{1}, \mathcal{O}_{3}, \mathcal{O}_{7}$, and \mathcal{O}_{8} to $5 K_{2}$ or $3 K_{2}^{L}$.

THEOREM 5. Every graph in \mathcal{P}_{4} can be reduced within \mathcal{P}_{4} by $\mathcal{O}_{1}, \mathcal{O}_{9}$, and \mathcal{O}_{10} to $5 K_{2}$.

[^0]THEOREM 6. Every graph in \mathcal{P}_{5} can be reduced within \mathcal{P}_{5} by $\mathcal{O}_{1}, \mathcal{O}_{11}$, and \mathcal{O}_{12} to $5 K_{2}$.

Class	Operation	Minimum graphs
\mathcal{P}_{0}	$\mathcal{O}_{1}, \mathcal{O}_{3}$	$5 K_{2}, 3 K_{2}^{L}, K_{2}^{2 L}$
\mathcal{P}_{1}	$\mathcal{O}_{1}, \mathcal{O}_{3}, \mathcal{O}_{4}$	$5 K_{2}, 3 K_{2}^{L}, K_{2}^{2 L}$
\mathcal{P}_{1}	$\mathcal{O}_{1}, \mathcal{O}_{2}, \mathcal{O}_{4}$	$5 K_{2}, 3 K_{2}^{L}, K_{2}^{2 L}$
\mathcal{P}_{2}	$\mathcal{O}_{1}, \mathcal{O}_{2}, \mathcal{O}_{3}, \mathcal{O}_{5}$	$5 K_{2}, 3 K_{2}^{L}, K_{2}^{2 L}$
\mathcal{P}_{3}	$\mathcal{O}_{1}, \mathcal{O}_{3}, \mathcal{O}_{7}, \mathcal{O}_{8}$	$5 K_{2}, 3 K_{2}^{L}$
\mathcal{P}_{4}	$\mathcal{O}_{1}, \mathcal{O}_{9}, \mathcal{O}_{10}$	$5 K_{2}$
\mathcal{P}_{5}	$\mathcal{O}_{1}, \mathcal{O}_{11}, \mathcal{O}_{12}$	$5 K_{2}$

Further Remarks

For $k=1,2,3,4,5$, we proved generating theorems for the classes \mathcal{P}_{k} of all k-edge-connected 5 -regular planar graphs.

One of next natural questions is to pursue splitter theorems for \mathcal{P}_{k} and $\mathcal{P}_{k, g}$. Suppose a graph G "contains" another graph H. Then how can G be built up from H in such a way that certain properties of G and H are preserved during the construction process? Probably the best-known result to answer this kind of question is the one by Seymour [7], for general matroids, and Negami [6], for graphs only, which explains the construction when the containment relation is the minor relation and the property to preserve is 3 -connectedness. These answers are known as splitter theorems. Ding and Kanno have proved splitter theorems for several classes of 3 -regular, 4 -regular or 4-regular planar graphs (see [2, 3, 4]).

References

[1] J. W. Butler, A generation procedure for the simple 3-polytopes with cyclically 5-connected graphs, Canadian Journal of Mathematics XXVI (1974), No.3, 686-708.
[2] G. Ding and J. Kanno, Splitter Theorems for cubic graphs, Combin. Probab. Comput. 15 No. 3 (2006), 355-375.
[3] G. Ding and J. Kanno, Splitter Theorems for 4-regular graphs, submitted.
[4] J. Kanno, Splitter theorems for 3- and 4-regular graphs, Ph.D. dissertation, Louisiana State University, Baton Rouge, Louisiana, 2003.
[5] J. Kanno and M. Kriesell, A generating theorem for 5-regular simple planar graphs I, Congressus Numerantium 185 (2007), 127-143.
[6] S. Negami, A characterization of 3-connected graphs containing a given graph, J. Combinatorial Theory Series B, 32 (1982), 69-74.
[7] P. D. Seymour, Decomposition of regular matroids, J. Combinatorial Theory Series B, $\mathbf{2 8}$ (1980), 305-359.
[8] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer, Berlin, 2003

[^0]: *Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803, USA. E-mail: ding@math.lsu.edu
 ${ }^{\dagger}$ Mathematics and Statistics Program, Louisiana Tech University, Ruston, Louisiana 71272, USA. E-mail: jkanno, jsu007@latech.edu

