Generating 5-regular planar graphs

Guoli Ding ^{*}, Jinko Kanno and Jianning Su [†]

For k = 0, 1, 2, 3, 4, 5, let \mathcal{P}_k be the class of k-edge-connected 5-regular planar graphs. In this paper, graph operations are introduced that generate all graphs in each \mathcal{P}_k .

THEOREM 1. Every graph in \mathcal{P}_0 can be reduced within \mathcal{P}_0 by \mathcal{O}_1 and \mathcal{O}_3 to a graph for which every component is $5K_2, 3K_2^L$ or K_2^{2L} .

THEOREM 2. Every graph G in \mathcal{P}_1 can be reduced within \mathcal{P}_1

- (i) to $5K_2$, $3K_2^L$ or K_2^{2L} by \mathcal{O}_1 , \mathcal{O}_3 , and \mathcal{O}_4 ; and (ii) to $3K_2^L$ or K_2^{2L} by \mathcal{O}_1 , \mathcal{O}_2 , and \mathcal{O}_4 , unless $G = 5K_2$.

THEOREM 3. Every graph in \mathcal{P}_2 can be reduced within \mathcal{P}_2 by \mathcal{O}_1 , \mathcal{O}_2 , \mathcal{O}_3 , \mathcal{O}_5 , and \mathcal{O}_6 to $3K_2^L$ or $5K_2$.

THEOREM 4. Every graph in \mathcal{P}_3 can be reduced within \mathcal{P}_3 by $\mathcal{O}_1, \mathcal{O}_3, \mathcal{O}_7$, and \mathcal{O}_8 to $5K_2$ or $3K_2^L$.

THEOREM 5. Every graph in \mathcal{P}_4 can be reduced within \mathcal{P}_4 by $\mathcal{O}_1, \mathcal{O}_9$, and \mathcal{O}_{10} to $5K_{2}$.

^{*}Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803, USA. E-mail: ding@math.lsu.edu

[†]Mathematics and Statistics Program, Louisiana Tech University, Ruston, Louisiana 71272, USA. E-mail: jkanno, jsu007@latech.edu

THEOREM 6.	Every	graph	in	\mathcal{P}_5	can	be	reduced	within	\mathcal{P}_5	by	$\mathcal{O}_1,$	$\mathcal{O}_{11},$	and	\mathcal{O}_{12}	to
$5K_2.$															

Class	Operation	Minimum graphs
\mathcal{P}_0	$\mathcal{O}_1,\mathcal{O}_3$	$5K_2, 3K_2^L, K_2^{2L}$
\mathcal{P}_1	$\mathcal{O}_1, \mathcal{O}_3, \mathcal{O}_4$	$5K_2, 3K_2^L, K_2^{2L}$
\mathcal{P}_1	$\mathcal{O}_1, \mathcal{O}_2, \mathcal{O}_4$	$5K_2, 3K_2^L, K_2^{2L}$
\mathcal{P}_2	$\mathcal{O}_1, \mathcal{O}_2, \mathcal{O}_3, \mathcal{O}_5$	$5K_2, 3K_2^L, K_2^{2L}$
\mathcal{P}_3	$\mathcal{O}_1, \mathcal{O}_3, \mathcal{O}_7, \mathcal{O}_8$	$5K_2, 3K_2^L$
\mathcal{P}_4	$\mathcal{O}_1, \mathcal{O}_9, \mathcal{O}_{10}$	$5K_2$
\mathcal{P}_5	$\mathcal{O}_1, \mathcal{O}_{11}, \mathcal{O}_{12}$	$5K_2$

Further Remarks

For k = 1, 2, 3, 4, 5, we proved generating theorems for the classes \mathcal{P}_k of all k-edge-connected 5-regular planar graphs.

One of next natural questions is to pursue splitter theorems for \mathcal{P}_k and $\mathcal{P}_{k,g}$. Suppose a graph G "contains" another graph H. Then how can G be built up from H in such a way that certain properties of G and H are preserved during the construction process? Probably the best-known result to answer this kind of question is the one by Seymour [7], for general matroids, and Negami [6], for graphs only, which explains the construction when the containment relation is the minor relation and the property to preserve is 3-connectedness. These answers are known as *splitter theorems*. Ding and Kanno have proved splitter theorems for several classes of 3-regular, 4-regular or 4-regular planar graphs (see [2, 3, 4]).

References

- J. W. Butler, A generation procedure for the simple 3-polytopes with cyclically 5-connected graphs, *Canadian Journal of Mathematics* XXVI (1974), No.3, 686-708.
- [2] G. Ding and J. Kanno, Splitter Theorems for cubic graphs, Combin. Probab. Comput.15 No.3 (2006), 355-375.
- [3] G. Ding and J. Kanno, Splitter Theorems for 4-regular graphs, submitted.
- [4] J. Kanno, Splitter theorems for 3- and 4-regular graphs, Ph.D. dissertation, Louisiana State University, Baton Rouge, Louisiana, 2003.
- [5] J. Kanno and M. Kriesell, A generating theorem for 5-regular simple planar graphs I, Congressus Numerantium 185 (2007), 127-143.
- [6] S. Negami, A characterization of 3-connected graphs containing a given graph, J. Combinatorial Theory Series B, 32 (1982), 69-74.
- [7] P. D. Seymour, Decomposition of regular matroids, J. Combinatorial Theory Series B, 28 (1980), 305-359.
- [8] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer, Berlin, 2003