## Topology of box complexes of graphs

Akira Kamibeppu*

In this talk, we assume that all graphs are finite, simple, undirected and connected. L. Lovász, in [4], proved Kneser's conjecture posed in [3] by using the BorsukUlam Theorem. His method was further developed by J. Matoušek and G. M. Ziegler in [5], where they introduced the box complex $\mathrm{B}(G)$ of a graph $G=(V(G), E(G))$ to obtain a lower bound for the chromatic number $\chi(G)$ of $G$ (see below).

We are interested in the relation between topology of the box complex of $G$ and combinatorics of $G$. First we give a few notions. For a subset $U$ of $V(G)$, a vertex $v$ of $G$ is called a common neighbor of $U$ if $u v \in E(G)$ for all $u \in U$. The set of all common neighbors of $U$ is denoted by $\mathrm{CN}_{G}(U)$. For subsets $U_{1}, U_{2}$ of $V(G)$ such that $U_{1} \cap U_{2}=\phi$, we define $G\left[U_{1}, U_{2}\right]$ as the bipartite subgraph of $G$ with the bipartition $\left\{U_{1}, U_{2}\right\}$ and the edge set $\left\{u_{1} u_{2} \in E(G) \mid u_{1} \in U_{1}, u_{2} \in U_{2}\right\}$. Also let $U_{1} \uplus U_{2}:=\left(U_{1} \times\{1\}\right) \cup\left(U_{2} \times\{2\}\right) \subset V(G) \times\{1,2\}$. The box complex of a graph $G$ is an abstract simplicial complex with the vertex set $V(G) \times\{1,2\}$ defined by

$$
\begin{aligned}
& \mathrm{B}(G)=\left\{U_{1} \uplus U_{2} \mid U_{1}, U_{2} \subseteq V(G), U_{1} \cap U_{2}=\phi,\right. \\
& \left.\quad G\left[U_{1}, U_{2}\right] \text { is complete, } \mathrm{CN}_{G}\left(U_{1}\right) \neq \phi \neq \mathrm{CN}_{G}\left(U_{2}\right)\right\} .
\end{aligned}
$$

It admits a free simplicial $\boldsymbol{Z}_{2}$-action $\nu$ on $V(\mathrm{~B}(G))$ defined by $u \uplus \phi \mapsto \phi \uplus u$ and $\phi \uplus u \mapsto u \uplus \phi\left(\right.$ so $\mathrm{B}(G)$ is called a free $\boldsymbol{Z}_{2}$-complex). Hence, the $\boldsymbol{Z}_{2}$-index of $\mathrm{B}(G)$ is defined as follows:

$$
\begin{aligned}
& \operatorname{ind}(\mathrm{B}(G))=\min \{n \mid \text { there exists a continuous } \\
& \left.\quad \operatorname{map} f:\|\mathrm{B}(G)\| \rightarrow S^{n} \text { such that } f \circ \nu=A \circ f\right\},
\end{aligned}
$$

where $S^{n}=\left\{x \in \boldsymbol{R}^{n+1} \mid\|x\|=1\right\}$ with the antipodality $A$. In [5], Matoušek and Ziegler proved for any graph $G$, the following inequality holds:

$$
\chi(G) \geq \operatorname{ind}(\mathrm{B}(G))+2
$$

The difference $\chi(G)-(\operatorname{ind}(\mathrm{B}(G))+2)$ can be arbitrarily large.
We define a 1-dimensional abstract simplicial complex $\bar{G}$ with the vertex set $V(\mathrm{~B}(G))$ as follows:

$$
\bar{G}=\{u \uplus \phi, v \uplus \phi, \phi \uplus u, \phi \uplus v, u \uplus v, v \uplus u \mid u v \in E(G)\} .
$$

Notice that $\bar{G}$ is a free $\boldsymbol{Z}_{2}$-subcomplex of $\mathrm{B}(G)$ and is a natural double covering of $G$. First, we present the relation between $\mathrm{B}(G)$ and $\bar{G}$ for a general graph $G$. It was shown, in [2], that $\mathrm{B}(G)$ is connected if and only if $\bar{G}$ is connected. It was also proved that $G$ is bipartite if and only if $\bar{G}$ is disconnected. Then, we have the following:

[^0]THEOREM 1. A graph $G$ is bipartite if and only if $\mathrm{B}(G)$ is disconnected.
When a graph $G$ contains no 4-cycle, Matoušek and Ziegler, in [5], proved that there exists a $\boldsymbol{Z}_{2}$-retraction of $\|\operatorname{sd} \mathrm{B}(G)\|$ onto $\|s d \bar{G}\|$, and in particular, $\operatorname{ind}(\mathrm{B}(G)) \leq 1$. In [1], it was shown that $\|\bar{G}\|$ is actually a strong $\boldsymbol{Z}_{2}$-deformation retract of $\|\mathrm{B}(G)\|$, in particular, $\operatorname{ind}(\mathrm{B}(G))=\operatorname{ind}(\bar{G})$. Moreover, we have the following:

THEOREM 2. A graph $G$ without 4-cycles if and only if $\|\bar{G}\|$ is a strong $\boldsymbol{Z}_{2}$ deformation retract of $\|\mathrm{B}(G)\|$.

Next, for the union $G \cup H$ of two graphs $G$ and $H$, we compare $\mathrm{B}(G \cup H)$ with its subcomplex $\mathrm{B}(G) \cup \mathrm{B}(H)$. One cannot hope that $\mathrm{B}(G \cup H)=\mathrm{B}(G) \cup \mathrm{B}(H)$ and $\mathrm{B}(G) \cap \mathrm{B}(H)=\mathrm{B}(G \cap H)$ in general. We give a sufficient condition under which those equalities hold.

THEOREM 3. Let $G \cup H$ be the union of two graphs $G$ and $H$, and assume that the intersection $G \cap H$ is of the form:

$$
V(G \cap H)=\left\{u_{1}, \cdots, u_{k}, v_{1}, \cdots, v_{k}\right\} \text { and } E(G \cap H)=\left\{u_{i} v_{i} \mid i=1, \cdots, k\right\} .
$$

Further we assume that (1) $u_{1}, \cdots, u_{k}$ are endvertices of $H$, (2) $v_{1}, \cdots, v_{k}$ are endvertices of $G$ and (3) the set $\left\{u_{1}, \cdots, u_{k}\right\}$ is independent in $G$. Then, we obtain

$$
\mathrm{B}(G \cup H)=\mathrm{B}(G) \cup \mathrm{B}(H) \text { and } \mathrm{B}(G \cap H)=\mathrm{B}(G) \cap \mathrm{B}(H) \text {. }
$$

For the union $G \cup H$ satisfying the condition of Theorem 3, we give an estimate of the chromatic number of $G \cup H$ :

THEOREM 4. Let $G \cup H$ be the union satisfying the condition of Theorem 3.
(1) If $k \geq 2$, we have $\chi(G \cup H) \leq \max \left\{\chi(G)+l_{H}, \chi(H)\right\}$, where $l_{H}$ is the graph invariant defined in this talk. If $k=1$, we have $\chi(G \cup H)=\max \{\chi(G), \chi(H)\}$.
(2) If $\max \{\operatorname{ind}(\mathrm{B}(G)), \operatorname{ind}(\mathrm{B}(H))\} \geq 1$, we have

$$
\operatorname{ind}(\mathrm{B}(G \cup H))=\max \{\operatorname{ind}(\mathrm{B}(G)), \operatorname{ind}(\mathrm{B}(H))\}
$$

If $\operatorname{ind}(\mathrm{B}(G))=\operatorname{ind}(\mathrm{B}(H))=0$, we have $\operatorname{ind}(\mathrm{B}(G \cup H)) \leq 1$.

## References

[1] A. Kamibeppu. Homotopy type of the box complexes of graphs without 4-cycles, to appear in Tsukuba J. Math.
[2] A. Kamibeppu. Subcomplexes of box complexes of graphs, submitted.
[3] M. Kneser. Aufgabe 360, Jber. Deutsch. Math.-Verein. 58, Abt., 27, 1955.
[4] L. Lovász. Kneser's conjecture, chromatic number and homotopy. J. Combinatorial Theory, Ser. A, 25, 319-324, 1978.
[5] J. Matoušek and G. M. Ziegler. Topological lower bounds for the chromatic number: A hierarchy. Jahresbericht der DMV, 106, 71-90, 2004.


[^0]:    *Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai Tsukuba-shi Ibaraki, 305-8571, Japan. E-mail: akira04k16@math.tsukuba.ac.jp

