Topology of box complexes of graphs

Akira Kamibeppu*

In this talk, we assume that all graphs are finite, simple, undirected and connected. L. Lovász, in [4], proved Kneser's conjecture posed in [3] by using the Borsuk-Ulam Theorem. His method was further developed by J. Matoušek and G. M. Ziegler in [5], where they introduced the box complex B(G) of a graph G = (V(G), E(G))to obtain a lower bound for the chromatic number $\chi(G)$ of G (see below).

We are interested in the relation between topology of the box complex of G and combinatorics of G. First we give a few notions. For a subset U of V(G), a vertex v of G is called a *common neighbor* of U if $uv \in E(G)$ for all $u \in U$. The set of all common neighbors of U is denoted by $CN_G(U)$. For subsets U_1, U_2 of V(G)such that $U_1 \cap U_2 = \phi$, we define $G[U_1, U_2]$ as the bipartite subgraph of G with the bipartition $\{U_1, U_2\}$ and the edge set $\{u_1u_2 \in E(G) \mid u_1 \in U_1, u_2 \in U_2\}$. Also let $U_1 \uplus U_2 := (U_1 \times \{1\}) \cup (U_2 \times \{2\}) \subset V(G) \times \{1, 2\}$. The *box complex* of a graph Gis an abstract simplicial complex with the vertex set $V(G) \times \{1, 2\}$ defined by

$$\mathsf{B}(G) = \{ U_1 \uplus U_2 \mid U_1, U_2 \subseteq V(G), U_1 \cap U_2 = \phi, \\ G[U_1, U_2] \text{ is complete, } \operatorname{CN}_G(U_1) \neq \phi \neq \operatorname{CN}_G(U_2) \}.$$

It admits a free simplicial \mathbb{Z}_2 -action ν on $V(\mathsf{B}(G))$ defined by $u \uplus \phi \mapsto \phi \uplus u$ and $\phi \uplus u \mapsto u \uplus \phi$ (so $\mathsf{B}(G)$ is called a free \mathbb{Z}_2 -complex). Hence, the \mathbb{Z}_2 -index of $\mathsf{B}(G)$ is defined as follows:

 $\operatorname{ind}(\mathsf{B}(G)) = \min \{ n \mid \text{there exists a continuous} \\ \operatorname{map} f : \|\mathsf{B}(G)\| \to S^n \text{ such that } f \circ \nu = A \circ f \},$

where $S^n = \{x \in \mathbb{R}^{n+1} | ||x|| = 1\}$ with the antipodality A. In [5], Matoušek and Ziegler proved for any graph G, the following inequality holds:

$$\chi(G) \ge \operatorname{ind}(\mathsf{B}(G)) + 2$$

The difference $\chi(G) - (\operatorname{ind}(\mathsf{B}(G)) + 2)$ can be arbitrarily large.

We define a 1-dimensional abstract simplicial complex \overline{G} with the vertex set $V(\mathsf{B}(G))$ as follows:

$$\overline{G} = \{ u \uplus \phi, v \uplus \phi, \phi \uplus u, \phi \uplus v, u \uplus v, v \uplus u \mid uv \in E(G) \}.$$

Notice that \overline{G} is a free \mathbb{Z}_2 -subcomplex of $\mathsf{B}(G)$ and is a natural double covering of G. First, we present the relation between $\mathsf{B}(G)$ and \overline{G} for a general graph G. It was shown, in [2], that $\mathsf{B}(G)$ is connected if and only if \overline{G} is connected. It was also proved that G is bipartite if and only if \overline{G} is disconnected. Then, we have the following:

^{*}Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai Tsukuba-shi Ibaraki, 305-8571, Japan. E-mail: akira04k16@math.tsukuba.ac.jp

THEOREM 1. A graph G is bipartite if and only if B(G) is disconnected.

When a graph G contains no 4-cycle, Matoušek and Ziegler, in [5], proved that there exists a \mathbb{Z}_2 -retraction of $\|\mathsf{sd} \mathsf{B}(G)\|$ onto $\|\mathsf{sd} \overline{G}\|$, and in particular, $\operatorname{ind}(\mathsf{B}(G)) \leq 1$. In [1], it was shown that $\|\overline{G}\|$ is actually a strong \mathbb{Z}_2 -deformation retract of $\|\mathsf{B}(G)\|$, in particular, $\operatorname{ind}(\mathsf{B}(G)) = \operatorname{ind}(\overline{G})$. Moreover, we have the following:

THEOREM 2. A graph G without 4-cycles if and only if $\|\overline{G}\|$ is a strong \mathbb{Z}_2 deformation retract of $\|\mathsf{B}(G)\|$.

Next, for the union $G \cup H$ of two graphs G and H, we compare $\mathsf{B}(G \cup H)$ with its subcomplex $\mathsf{B}(G) \cup \mathsf{B}(H)$. One cannot hope that $\mathsf{B}(G \cup H) = \mathsf{B}(G) \cup \mathsf{B}(H)$ and $\mathsf{B}(G) \cap \mathsf{B}(H) = \mathsf{B}(G \cap H)$ in general. We give a sufficient condition under which those equalities hold.

THEOREM 3. Let $G \cup H$ be the union of two graphs G and H, and assume that the intersection $G \cap H$ is of the form:

$$V(G \cap H) = \{u_1, \dots, u_k, v_1, \dots, v_k\}$$
 and $E(G \cap H) = \{u_i v_i \mid i = 1, \dots, k\}.$

Further we assume that $(1)u_1, \dots, u_k$ are endvertices of H, $(2)v_1, \dots, v_k$ are endvertices of G and (3) the set $\{u_1, \dots, u_k\}$ is independent in G. Then, we obtain

 $\mathsf{B}(G \cup H) = \mathsf{B}(G) \cup \mathsf{B}(H) \text{ and } \mathsf{B}(G \cap H) = \mathsf{B}(G) \cap \mathsf{B}(H).$

For the union $G \cup H$ satisfying the condition of Theorem 3, we give an estimate of the chromatic number of $G \cup H$:

THEOREM 4. Let $G \cup H$ be the union satisfying the condition of Theorem 3. (1) If $k \ge 2$, we have $\chi(G \cup H) \le \max{\{\chi(G) + l_H, \chi(H)\}}$, where l_H is the graph invariant defined in this talk. If k = 1, we have $\chi(G \cup H) = \max{\{\chi(G), \chi(H)\}}$. (2) If $\max{\{\operatorname{ind}(\mathsf{B}(G)), \operatorname{ind}(\mathsf{B}(H))\}} \ge 1$, we have

 $\operatorname{ind}(\mathsf{B}(G \cup H)) = \max{\operatorname{ind}(\mathsf{B}(G)), \operatorname{ind}(\mathsf{B}(H))}.$

If $\operatorname{ind}(\mathsf{B}(G)) = \operatorname{ind}(\mathsf{B}(H)) = 0$, we have $\operatorname{ind}(\mathsf{B}(G \cup H)) \le 1$.

References

- [1] A. Kamibeppu. Homotopy type of the box complexes of graphs without 4-cycles, to appear in Tsukuba J. Math.
- [2] A. Kamibeppu. Subcomplexes of box complexes of graphs, submitted.
- [3] M. Kneser. Aufgabe 360, Jber. Deutsch. Math.-Verein. 58, Abt., 27, 1955.
- [4] L. Lovász. Kneser's conjecture, chromatic number and homotopy. J. Combinatorial Theory, Ser. A, 25, 319-324, 1978.
- [5] J. Matoušek and G. M. Ziegler. Topological lower bounds for the chromatic number: A hierarchy. Jahresbericht der DMV, 106, 71-90, 2004.