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Abstract

In 1988, Seiya Negami published a conjecture stating that a graph
G has a finite planar cover (i.e. a homomorphism from some planar
graph onto G which maps the vertex neighbourhoods bijectively) if and
only if G embeds in the projective plane. Though the ”if” direction
is easy, and some supporting weaker statements have been shown by
him, the conjecture is still open, after more than 20 years of intensive
investigation. We review the (quite significant) progress made so far in
solving Negami’s conjecture, and propose possible promising directions
of future research.

1 Planar covers

We deal only with finite undirected graphs, and assume that the reader is
familiar with basic terms of topological graph theory, e.g. with [14].

We start with a precise formal definition of a cover which we then relax
to a less formal and more usable variant.

Definition. A graph H is a cover of a graph G if there exist a pair of onto
mappings (ϕ, ψ), ϕ : V (H) → V (G), ψ : E(H) → E(G), called a (cover)
projection, such that ψ maps the edges incident with each vertex v in H

bijectively onto the edges incident with ϕ(v) in G.
In particular, for e = uv in H, the edge ψ(e) in G has ends ϕ(u), ϕ(v).

Thus, for simple graphs, it is enough to specify the vertex projection ϕ that
maps the neighbors of each vertex v in H bijectively onto the neighbors
of ϕ(v) in G (a traditional approach). If G′ is a subgraph of G, then the
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graph H ′ with the vertex set ϕ−1(V (G′)) and the edge set ψ−1(E(G′)) is
called a lifting of G′ into H.

To illustrate the concept of a cover, we present several basic properties:

• Degree preservation; dH(v) = dG(ϕ(v)) for each vertex v ∈ V (H).

• Lifting of a path P of G into H consists of a collection of disjoint paths
isomorphic to P . Hence, if G is connected, then |ϕ−1(v)| = k is the
same number for all v ∈ V (G). We then speak about a k-fold cover.

• Lifting of a cycle Cn of G consists of a collection of disjoint cycles
whose lengths are divisible by n.

• Any graph embedded in the projective plane has a double cover which
is planar, via the universal covering map from the sphere onto the
projective plane.

• If G has a cover which is planar, then so does every minor of G.

• Let e be an edge of G between two neighbours of some cubic vertex.
If G − e has a cover which is planar, then so does G. Therefore, if G

has a planar cover and G′ is obtained from G by Y∆-transformations
(replacing a cubic vertex with a triangle on the neighbours), then G′

has a planar cover.

Interest in graphs having a cover which is planar has been raised by
Negami [15] in relation to enumeration of distinct projective embeddings
of 3-connected graphs. Interestingly, a very similar concept has been intro-
duced and studied independently at the same time by Fellows [4], cf. also [5].
(Fellows’ concept of planar emulators has been later considered also by Ki-
takubo [13] under the name of branched planar covers.) One of the early
results on planar covering is an immediate corollary of [15]:

Theorem 1 (Negami, 1986) A connected graph has a double planar cover
if and only if it embeds in the projective plane.

A natural extension of this result is provided with the concept of regular
covers [16]. A cover ϕ : V (H) → V (G) is regular if there is a subgroup A

of the automorphism group of H such that ϕ(u) = ϕ(v) for u, v ∈ V (H) if,
and only if τ(u) = v for some automorphism τ ∈ A.

Theorem 2 (Negami, 1988) A connected graph has a finite regular planar
cover if and only if it embeds in the projective plane.

It is worth to note, though Negami’s proofs of the above two results
are based on topological arguments and the fact that the universal covering
space of the projective plane is the sphere, we can provide alternative clean
combinatorial arguments (yet unpublished) for both the theorems.

We informally sketch the combinatorial idea for Theorem 1: Let a double
cover of G be a 3-connected plane (embedded) graph H (handling of non-
3-connected cases is rather technical but straightforward, cf. also Negami’s
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arguments [15, 16]). If T is any spanning tree of G, then T lifts into two
trees T ′ and T ′′ in H, and the mapping “exchanging” T ′ with T ′′ is an
automorphism of H. By uniqueness of the plane embedding of 3-connected
H, the rotation scheme of vertices of T ′ in H hence must be the same as that
of T ′′ in H. Consequently, the edges “between” T ′ and T ′′ in H have the
same cyclic orderings when viewed from T ′ as from T ′′. If these two orderings
are of opposite orientation, then we easily extend T ′ into a plane embedding
of G, and with same orientation we analogously get an embedding of G with
one crosscap. Furthermore, with little extension at the end, the same idea
can be used to prove also Theorem 2.

2 Negami’s conjecture

Theorem 2 suggests the following immediate generalization [16]:

Conjecture 3 (Negami, 1988) A connected graph has a finite planar cover
if and only if it embeds in the projective plane.

Although the two statements sound very similar, the real jump in their
difficulty seems enormous. No proof ideas of Theorem 2 reasonably extend
towards solving Conjecture 3; the main reason being lack of “regularity”,
or symmetry, in the cover graph. Consequently, despite a long chain of
promising partial results (and one finalizing announcement in 2004 with no
written proof yet), Conjecture 3 is still open in 2008.

All the mentioned partial results follow a simple scheme developed at
the beginning by Archdeacon and Negami: Easily, if a graph embeds in the
projective plane, then it has a double planar cover (Theorem 1). Conversely,
there is a known list [6, 1] of all 35 forbidden minors for the graphs embed-
dable in the projective plane, see them in the Appendix. So if a connected
graph G does not embed in the projective plane, then G has F , one of the
connected 32 graphs of that list, as a minor. If we can prove that F has no
finite planar cover, then neither has G by the above observation. Further-
more, as observed by Archdeacon, the list can be further shortened using
Y∆-transformations.

Though the problem now sounds as a finite check of (at most) 32 graphs,
we remind the reader that even looking for a planar cover of just one graph
does not seem to be a finite task so far.

Disjoint k-graphs

Actually, quite large portion of the 32 graphs can be covered with a simple
general argument; it is enough to know that a graph contains “two disjoint
k-graphs” to argue that it has no finite planar cover. The rather complicated
notion of k-graphs was introduced already in [6] and we refer the reader to
e.g. [9, Section 2.3] for a precise formulation.
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The mentioned argument, discovered by Negami [17] and Archdeacon
[unpublished], gives the following result.

Theorem 4 (Negami / Archdeacon, 1988)
Neither of the graphs K3,3 · K3,3, K5 · K3,3, K5 · K5, B3, C2, C7, D1, D4, D9,

D12, D17, E6, E11, E19, E20, E27, F4, F6, G1 have a finite planar cover. (See
the Appendix for notation.)

We informally sketch its idea on a particular case of K5 · K5, but a
full generalization is quite straightforward. Let c be the degree-8 vertex
of K5 · K5, and A4 and B4 be the two (isomorphic to K4) components of
K5 · K5 − c. Consider a finite plane-embedded cover H of K5 · K5, and
assume, up to symmetry, that it is a component H4 of the lifting of A4 into
H that contains no part of lifting of B4 in its internal faces. However, H4 as
a cubic graph cannot be outerplanar, and hence some internal vertex x of
H4 is adjacent to some y in the lift of c into H, and this y must be adjacent
to vertices in the lifting of B4, a contradiction. Hence K5 · K5 has no finite
planar cover.

Two discharging arguments

Discharging is a proof method developed mainly along the Four colour prob-
lem. The method simply applies Euler’s formula in a clever way.

A very easy discharging argument shows that the graph K3,5 cannot have
a finite planar cover. Though this claim is first attributed to Fellows, it does
not occur in [4]. A short published proof can be found, e.g., in [12].

Theorem 5 (1988, 1993) The graph K3,5 has no finite planar cover.

In a sketch again, suppose that a (bipartite) graph H was a finite cover
of K3,5 embedded in the plane. We assign charge of 3(4 − dH(v)) to every
vertex v, and of 3(4− len(φ)) to every face φ of H. By Euler’s formula, the
total charge of H is 12 · 2 > 0. Then every 3-vertex of H sends its charge
equally 1 to each neighbour. So every 5-vertex x of H now has charge of
−3+5 = 2. That charge is subsequently sent from x to any incident ≥6 -face
of H. Say x is a lift of a vertex a of the smaller vertex part {a, b, c} of K3,5,
and so the second neighbourhood of x in H contains only vertices lifting
from the other two b, c by definition of a cover. Hence it cannot happen
that all the incident faces of x in H are quadrilaterals, as lifts of b and
of c cannot alternate around the dual 5-cycle of x. Therefore, all vertices
of H end up with nonnegative charge, and so do all the faces as one may
easily count. So, where has all the positive charge gone? This contradiction
concludes Theorem 5.

Another, significantly more involved discharging argument has been
found several years later by the author [7] for the case of K4,4−e.
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Theorem 6 (PH, 1998) The graph K4,4−e has no finite planar cover.

A noticeable feature of the proof is that discharging is applied not to the
supposed planar cover itself, but to a special simplification of it. That seems
the right way to go, as a successful case of E2 in Theorem 9 also shows.

Structural approach

Yet another approach to prove nonexistence of a planar cover was discovered
by Archdeacon already in 1988, but the proof had not been published until
much later in [2].

Theorem 7 (Archdeacon, 1988, 2002)
The graphs K7−C4 and K4,5−4K2 have no finite planar covers.

Here the proof cannot be easily sketched, and so we mention only that
it looks for a short “necklace” of interconnected 4-cycles in the supposed
cover, and then finds a way the necklace can be made even shorter, arriving
at a contradiction. One can say that this idea is a wide generalization of the
“disjoint k-graph” argument of Theorem 4.

Interestingly, the exactly same proof was rediscovered (independently) by
Thomas and the author 10 years later, see [9], and subsequently generalized
by the author to cover also the case of C4 in Theorem 9 in the next section.
The particularly nice feature of this generalization is that its proof directly
constructs from the shortest necklace a projective embedding of the covered
graph, instead of deriving an artificial contradiction, cf. also Theorems 1,2.

3 The bad: K1,2,2,2 and relatives

After all, putting together Theorems 4, 5, 6, and 7, and applying Y∆-
transformations to the graphs D3, E5,F1,B7, C3, C4,D2, E2, leaves only one
following case to be resolved.

Corollary 8 (1998) If the graph K1,2,2,2 (the octahedron with an extra ver-
tex) has no finite planar cover, then Conjecture 3 holds true.

It might seem that Corollary 8 “almost solves” Negami’s conjecture, but
the opposite appears true, since even more than 10 years later the conjecture
is still wide open. Notice that there are other graphs on the list of projective
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obstructions which are unsolved yet. Namely, the graph C4 reduces via B7 to
K1,2,2,2, and so does the graph E2 via D2, C3 and B7. Hence in the situation
when we are not able to attack the final case of K1,2,2,2 directly, it might
perhaps help to “train our muscles” on some of the easier cases. Such a
strategy led to the following new results [9, 10]:

Theorem 9 (PH, 1999 and 2001) The graphs C4 and E2 (otherwise both
Y∆-transformed to K1,2,2,2) have no finite planar covers.

Despite the graphs C4 and E2 are relatives in a “family of K1,2,2,2”,
the proofs for each one of them are completely different and incomparable.
While an involved discharging argument is applied in the case of E2, the
other case of C4 is covered by a generalization of the necklace argument
from Theorem 7. Unfortunately, neither of these arguments can be directly
generalized to any other of the missing cases! So, we suggest that the right
way to attack the case of K1,2,2,2 is to find a suitable common generalization
of the structural and discharging approaches of Section 2.

One may proceed even further in the direction of Theorem 9, and ask for
which of all graphs, to our current knowledge, Conjecture 3 might possibly
fail. That direction has been taken by Thomas and the author in [9] and [11].
A planar expansion of a graph G is a graph which results from G by adding
a planar graph sharing one vertex with G, or by replacing an edge or a cubic
vertex with a planar graph with its attachments on the outer face. We refer
to [9, Section 6.1] for a formal description.

Theorem 10 (PH and Thomas, 1999 and 2004)
Let Π be the set of K1,2,2,2 and the 15 graphs listed below. If a connected
graph G has a finite planar cover but no projective embedding, then G is a
planar expansion of some graph from Π.

B7 B′

7 B′′

7 C3 C′

3

C′′

3 C•

3 C◦

3 D2 D′

2

D′′

2 D′′′

2 D•

2 D◦

2 D⋆
2

6



Furthermore, we can order those possible counterexamples from Π ac-
cording to their difficulty, and then perhaps apply our “muscle-training”
strategy with respect to this ordering. Let us write G

NC
→H to mean that

“if G has no planar cover, then neither has H”. We easily get:

K1,2,2,2
NC
→ B7

NC
→ B′

7 NC
→ B′′

7 NC
→ C3

NC
→ C′

3 NC
→ C′′

3
→

→ C•

3
→ D•

2

րNC ցNC րNC

C′′

3 NC
→ C◦

3 NC
→ D2

NC
→ D′

2 NC
→ D′′

2 NC
→ D′′′

2 NC
→ D◦

2

lNC

D⋆

2

Though especially the tail case of D•

2 looks very nice, symmetrical, and
“easy”, no progress on either case has been made till now (2008). Still, that
may be because no one (including us) has tried seriously enough. On the
other hand, Theorem 10 may also be used as a selection filter for ideas—if
an idea should put us forward in solving Negami’s conjecture, then it has to
be applicable to at least one of the graphs in Π.

4 Additional remarks

Several other research papers studying planar covers of graphs, but not in a
direct relation to solving Conjecture 3, have been published over the years.
In [3], for instance, it is proved that no nonplanar graph has an odd-fold
planar cover. In [18] it is proved that Conjecture 3 holds for all cubic graphs,
but that claim is indeed a trivial corollary of Theorem 10.

In [8], a natural way of extending Conjecture 3 is outlined: the conjecture
is equivalent to saying that a connected graph has a finite projective cover if
and only if it is projective. Such a formulation can be easily extended to any
nonorientable surface (while it is trivially false for all orientable surfaces),
and little support for the Klein bottle extension was provided there [8], too.
Then, the weaker projective-planar double-covering variant of this reformu-
lation has been proved by Negami in [20], using also the idea of so called
composite coverings [19].

Lastly, we return to related Fellows’ notion of planar emulators [5].
Briefly, an emulator is like a cover in which the mapping of neighbours
can be surjective (instead of strictly bijective). It appears very natural to
extend [5] Conjecture 3 by replacing “cover” with “emulator”, but very lit-
tle has been done so far in it. One can immediately extend the proofs of
Theorems 4 and 5 to emulators, but the same seems not so easy for the
remaining results, and we know of no successful research in such a direction.

Actually, may it ever happen that a graph has an emulator but not an
analogous cover? Or, is a conjecture “a graph has a finite planar emulator
if and only if it has a finite planar cover” easier to solve than Negami’s
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conjecture? We have no clue this time, but [8] shows an example of a graph
which has an emulator on the triple-torus, but no cover or embedding there.

References

[1] D. Archdeacon, A Kuratowski Theorem for the Projective Plane,
J. Graph Theory 5 (1981), 243–246.

[2] D. Archdeacon, Two Graphs Without Planar Covers, Journal of Graph
Theory 41 (2002), 318–326.

[3] D. Archdeacon, R.B. Richter, On the Parity of Planar Covers, J. Graph
Theory 14 (1990), 199–204.

[4] M. Fellows, Encoding Graphs in Graphs, Ph.D. Dissertation, Univ. of
California, San Diego, 1985.

[5] M. Fellows, Planar Emulators and Planar Covers, manuscript, 1988.

[6] H. Glover, J.P. Huneke, C.S. Wang, 103 Graphs That Are Irreducible
for the Projective Plane, J. of Comb. Theory Ser. B 27 (1979), 332-370.
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Appendix: The obstructions for projective plane

This is a list of all the 35 minor-minimal non-projective graphs [6, 1], ordered
according to their significance for solving Negami’s Conjeture 3.

K3,3+K3,3 K5+K3,3 K5+K5 K3,3 · K3,3 K5 · K3,3

K5 · K5 B3 C2 C7 D1

D4 D9 D12 D17 E6

E11 E19 E20 E27 F4

F6 G1 K3,5 K4,5−4K2 K4,4−e

K7−C4 D3 E5 F1 K1,2,2,2

B7 C3 C4 D2 E2
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