Knotted Hamiltonian cycles in every spatial embeddings of K_8

Yoshiyasu Hirano*

A Hamiltonian cycle in a graph is a cycle that passes through every vertex of the graph. We call a tame embedding of a graph into the 3-space R^3 a spatial embedding of the graph, and we call the image of a spatial embedding a spatial graph. A cycle of a spatial graph is said to be knotted if it bounds no 2-cell in R^3 . Conway and Gordon [1] proved that a spatial embedding of K_7 contains exactly one knotted Hamiltonian cycle.

Joel Foisy [3] remains an open question to determine if 1 is the best lower bound for the minimum number of knotted Hamiltonian cycles in every spatial embedding of K_8 . We use the result of Foisy et al. [2], we prove the complete graph K_8 contains at least 3 knotted Hamiltonian cycles in every spatial embedding.

To prove Theorem 2, we will use the following lemma.

LEMMA 1. In every spatial embedding of K_7 , there exists at least 3 edges of K_7 each of which is contained in an odd number of Hamiltonian cycles with nonzero arf invariant.

Proof. We recall the proof of Lemma 2.1 in [2], consider an arbitrary spatial embedding of K_7 . Let e_1, \ldots, e_{21} be the edges of K_7 , and let $n_i, i = 1, \ldots, 21$ denote the number of Hamiltonian cycles with nonzero arf invariant that contain e_i . By Conway-Gordon's result [1], the given embedding contains an odd number of Hamiltonian cycles with nonzero arf invariant, let the number of such Hamiltonian cycles be 2n + 1, and then, $\sum_{i=1}^{21} n_i = 7(2n + 1)$. Thus, $\sum_{i=1}^{21} n_i$ must be odd. Therefore, there must be an odd number of the n_i that is odd.

We consider for any vertex v of K_7 , and let e_{i_1}, \ldots, e_{i_6} be the edges incident to v. Since each Hamiltonian cycle contains exactly two edges incident to v, $\sum_{j=1}^{6} n_{i_j}$ must be even. Thus, there must be an even number of the n_{i_j} that is odd. Let S(v) denote the number of n_{i_j} that is odd. Since there must be an odd number of the n_i that is odd, at least one of the n_i must be odd. Thus, there exists a vertex v_0 such that $S(v_0) \ge 2$. Hence, since there must be an odd number of the n_i that is odd, at least 3 of the n_i must be odd. \Box

^{*}Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-no-cho, Niigata City 950-2181, Japan. E-mail: f07n020k@mail.cc.niigata-u.ac.jp

THEOREM 2. K_8 contains at least 3 knotted Hamiltonian cycles in every spatial embedding.

Proof. We recall the proof of Theorem 2.2 in [2], let G_8 denote the spatial embedding of K_8 , consider the spatial embedding of the subgraph induced by 7 vertices of G_8 . Let v denote the eighth vertex, and let G_7 denote the subgraph on 7 vertices. By Lemma 1, there exists 3 edges e'_1 , e'_2 , e'_3 of G_7 each of which is contained in an odd number of Hamiltonian cycles with nonzero arf invariant. Let w_1 and w_2 denote the vertices of e'_1 , and let x_1 and x_2 denote the vertices of e'_2 , and let y_1 and y_2 denote the vertices of e'_3 . We replace e'_1 with the edges (v, w_1) and (v, w_2) . We denote this subdivided K_7 by G'_7 . Ignoring the degree 2 vertex v, by Conway-Gordon's result [1], the embedded G'_7 must have an odd number of Hamiltonian cycles with nonzero arf invariant. Since there was an odd number of Hamiltonian cycles of G_7 through the edge e'_1 with nonzero arf invariant, there is an even number of Hamiltonian cycles of G_7 that do not through the edge e'_1 and with nonzero arf invariant. The Hamiltonian cycles of G_7 that do not through the edge e'_1 are exactly the same as the Hamiltonian cycles of G'_7 that do not through the edges (v, w_1) and (v, w_2) . Thus, in the embedding of G'_7 , there must be an odd number of Hamiltonian cycles through the edges (v, w_1) and (v, w_2) with nonzero arf invariant. These cycles are Hamiltonian cycles of G_8 . Similarly, there must be an odd number of Hamiltonian cycles of G_8 that through the edges (v, x_1) and (v, x_2) with nonzero arf invariant, and there must be an odd number of Hamiltonian cycles of G_8 that through the edges (v, y_1) and (v, y_2) with nonzero arf invariant. Hence, in the G_8 , there must be at least 3 knotted Hamiltonian cycles. \Box

References

- J. H. Conway and C. McA. Gordon: Knots and links in spatial graphs, J. Graph Theory. 7(1983), 446-453
- [2] P.Blain, G. Bowlin, J. Hendricks, J. LaCombe, J. Foisy : Knotted Hamiltonian cycles in every spatial embeddings of complete graphs, New York Journal of Mathematics, 13(2007), 11-16.
- [3] J. Foisy : Corrigendum to "Knotted Hamiltonian cycles in every spatial embeddings of complete graphs ", New York Journal of Mathematics, 14 (2008), 285-287.