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Abstract
A map is a graph G embedded in a surface Σ such that each component of Σ−G is a simply

connected region. Those components are called the faces of the map. A circuit map, roughly
speaking, is a 2-connected planar map which is internally 3-connected. It has been shown that
circuit maps share many nice properties with 3-connected planar maps. In this talk, we discuss
some recent developments on the asymptotic number of surface maps which lead to the proof
of a conjecture of ’t Hooft in quantum physics. Those asymptotic formulas are also used to
study the chromatic numbers of a random map. We will also derive an asymptotic expression
for the number of circuit maps with n edges and compare it with the number of 2-connected
(3-connected) planar maps.

1 Enumerative properties of surface maps

For enumeration purpose, Tutte introduced the notion of rooting a map. A map is rooted by
specifying a vertex (called the root vertex), an edge incident with the vertex (called the root
edge) and a side of the edge. The face on the specified side is called the root face. Two rooted
maps are equivalent (isomorphic) if there is an automorphism of the surface which takes one
map to the other and preserves the rooting.

Let Mn be the number of rooted planar maps with n edges (loops and multiple edges are
allowed) and define the generating function

M(x) =
∑
n≥0

Mnxn.

In 1963 Tutte obtained the following beautiful formulas

M(x) =
4(1 + 2

√
1 − 12x)

3(1 +
√

1 − 12x)2
, and Mn =

2(2n)!3n

n!(n + 2)!
.

Using Stirling’s formula or singularity analysis, one obtains

Mn ∼ 2√
π

n−5/212n, as n → ∞.
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In general let Mn,g be the number of rooted maps on the orientable surface of genus g with
n edges. In 1986 Bender and Canfield obtained

Mn,g ∼ tgn
5(g−1)/212n, n → ∞,

where tg are positive constants satisfying complicated nonlinear recursions. We note t0 =
2/

√
π, t1 = 1/24.
There is a similar formula for the number of maps on non-orientable surfaces, with tg

replaced by another positive constant pg.
Gao (1993) showed that many interesting families of maps satisfy asymptotic formulas of

the form
αtg(βn)5(g−1)/2γn,

where α, β, and γ are positive constants depending only on the family of maps. For example,
the number Cn,g of rooted triangulations (or cubic maps) of genus g with 3n edges satisfies
(Gao, 1991)

Cn,g ∼ 3tg
(
61/5n

)5(g−1)/2
(12

√
3)n, n → ∞,

and the number Qn,g, of rooted quadrangulations of genus g with 2n edges satisfies (Gao,
1993)

Qn,g ∼ 4gtgn
5(g−1)/212n, n → ∞.

So tg are ”universal” constants. They have been difficult to compute or estimate until very
recently.

The following is from page 27 of the book Painleve Transcendents: The Riemann-Hilbert
Approach, by Fokas, Its, Kapaeve, and Novokshenov (AMS 2006):

On page 29 of the same book:
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We note that estimate (74) follows immediately from the above formula for Qn,g by noting

κg(n) =
n!22n−1Qn,g

4n
∼ 4gtg

8
n!

48n

n1+(5/2)(1−g)
.

Also, (73) is not quite right. The correct form should be

Eg(t) ∼ eg

(
t +

1
48

)(5/2)(1−g)

+ fg

(
t +

1
48

)(5/2)(1−g)+1/2

, g > 1,

and
E1(t) ∼ e1 ln

(
t +

1
48

)
+ f1.

Using algebraic combinatorics and KP-hierarchy, Goulden and Jackson (08) derived the
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following remarkably simple recursion: for (n, g) ̸= (−1, 0),

Hn,g =
4(3n + 2)

n + 1

(
n(3n − 2)Hn−2,g−1 +

n−1∑
i=−1

g∑
h=0

Hi,hHn−2−i,g−h

)
,

where Hn,g = (3n + 2)Cn,g and Cn,g is the number of rooted cubic maps (or triangulations)
with 3n edges on an orientable surface of genus g.

Using the Goulden-Jackson recursion and the asymptotic formula for Cn,g, Bender, Gao,
and Richmond (08) obtained

tg ∼ 40K sin(π/5)√
2π

(
1440g

e

)−g/2

, g → ∞.

where K
.= 0.10 is a constant.

Using the above estimate for tg, Garoufalidis, Le and Marino (08) proved a conjecture of
’t Hooft (82) about analyticity of free energy. They also noticed that there is a connection
between tg and Painleve I ODE, which leads to

tg ∼ 1
π

√
30
π

(
1440g

e

)−g/2

, g → ∞.

2 Locally planar maps and chromatic number of ran-

dom maps

We first recall the definition of locally planar maps and some related results.

• The face width (representativity) of a map is the minimum number of intersections of a
noncontractible cycle in the surface with the graph.

• A map in a given surface is called locally planar if it has sufficiently large face width,
that is, its face width exceeds some constant only depending on the surface.

• Bender-Gao-Richmond (94): On any fixed surface, a random map (from many interesting
families) is asymptotically almost surely (a.a.s.) locally planar. In fact the face width of
a random map with n edges is a.a.s. of the order ln n.

• Richmond and Wormald (95) proved that a random map a.a.s. has no symmetry, and
hence a property holds a.a.s. for a random rooted map in a given family if and only if it
holds a.a.s. for a random (unrooted) map.

• Robertson-Vitray (90): If M is locally planar then it is a minimum genus embedding of its
underlying graph G(M), and if G(M) is also 3-connected then M is the only embedding
of G(M) on the same surface. Hence for a family of 3-connected maps, an a.a.s result
for random maps carries to the underlying graphs.

• Mohar-Robertson (01) On any fixed surface, the number of 3-representative embeddings
of a 3-c graph is bounded by a constant (depending on the surface).

• Thomassen (92): every locally planar map is 5-colorable (vertex coloring or face coloring
by duality). This implies that a random 3-c graph of bounded genus a.a.s. has a 5-flow.

• Hutchinson (95): every locally planar quadrangulation on an orientable surface is 3-
colorable. Again this implies that a random 3-c 4-regular graph of bounded genus a.a.s.
has a 3-flow.
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Question 1 Let pj(Σ) be the limiting probability (if exists) that a random map on a fixed
surface Σ has chromatic number j. We note p4(Σ) + p5(Σ) = 1. What are p4(Σ) and p5(Σ)?
Bender-Gao-Richmond (1994) actually conjectured that p4(Σ) = 1.
Question 2. It follows from Hutchinson’s result that p2(Σ) + p3(Σ) = 1 for a random quad-
rangulation of an orientable surface Σ.

Fisk and Mohar (94): all locally planar quadrangulations of a given non-orientable surface
are 4-colorable.

Hence p2(Σ) + p3(Σ) + p4(Σ) = 1 for any non-orientable surface Σ.
What are the values of those limiting probabilities (if exist)?
Some of the above questions can be answered by noting

• (Bender-Canfield, 86) bipartite quadrangulations with 2n edges:

|Fn| ∼ tgn
5(g−1)/212n

• (Gao, 93) quadrangulations with 2n edges:

|Fn| ∼ 4gtgn
5(g−1)/212n.

It follows from the above asymptotic results that, for random quadrangulations on the
orientable surface of genus g, p2 = (1/4)g, p3 = 1 − (1/4)g.

• (Nakamoto-Negami-Ota,04): there are 4-chromatic locally planar qudrangulations of each
non-orientable surface. Archdeacon-Hutchinson-Nakamoto-Negami-Ota (01) character-
ized quadrangulations of the torus and Klein bottle with chromatic number 3. Youngs
(96) proved that a quadrangulation of the projective plane has chromatic number equal
to either 2 or 4. Hence for random quadrangulations of the projective plane, we have

p2 = 1/2, p3 = 0, and p4 = 1/2.

• For random quadrangulations of the non-orientable surface of Euler genus g, we have
p2 = (1/4)g, p3 + p4 = 1 − (1/4)g.

3 Enumeration of circuit maps

In 1966 Barnette [2] introduced a set of graphs, called circuit graphs, which are obtained from
3-connected planar graphs by deleting a vertex. Circuit graphs have nice closure properties
which make them easier to deal with than 3-connected planar graphs for studying some graph-
theoretic properties. Circuit graphs and 3-connected planar graphs share many interesting
properties which are not satisfied by general 2-connected planar graphs. For example, Barnette
[2] proved that every circuit graph has a spanning tree with maximum degree at most 3 (called
a 3-tree); This is strengthened by Gao and Richter [14] who showed that every circuit graph
contains a closed walk visiting each vertex once or twice (called a 2-walk); Jackson and Wormald
[17] showed that the existence of a 2-walk in a graph implies the existence of a 3-tree; It is
also known that circuit graphs contain long cycles [18, 9, 15] and they contain 2-connected
spanning trees with small maximum degree [3, 13]. Very recently Nakamoto et al [24] showed
that every circuit graph contains a 3-tree with few vertices of degree 3.

For enumeration purpose we shall use the following equivalent definition of circuit graphs
(Gao-Richter, 94) : A circuit graph is an ordered pair (G,C) such that
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(1) G is a 2-connected graph and C is a cycle in G;

(2) there is an embedding of G in the plane such that C bounds a face;

(3) if (H,K) is a 2-separation of G, then C ̸⊆ H and C ̸⊆ K.

A simple circuit map is a circuit graph (G,C) embedded in the plane so that C bounds the
exterior face. It is rooted by choosing the exterior face as the root face. It is also convenient to
consider circuit maps which are defined almost identically to simple circuit maps except that
there could be digons adjacent to the root face.

Figure 1: Circuit maps with multiple edges

We shall use the following well-known bijection φ between rooted maps and rooted quad-
rangulations. Insert a vertex inside each face of a map M and join it to each vertex on the
face to subdivide the face into triangles. Removing the edges of M gives the quadrangulation
φ(M). The rooting of φ(M) can be chosen in the following canonical way: the vertex f0 inside
the root face of M is the root vertex of φ(M), the edge joining f0 and the root vertex of M is
the root edge of φ(M).

Figure 2: Bijection between rooted maps and rooted quadrangulations

It is easy to check that φ has the following properties.

• M is 2-connected if and only if φ(M) has no multiple edges,

• M is 3-connected if and only if φ(M) has no multiple edges and no separating quadrangles.

• M is a circuit map if and only if φ(M) has no multiple edges and no root-separating
quadrangles.
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Let Qi,j,k be the number of rooted quadrangulations with no multiple edges, and with i
red vertices, j blue vertices and root vertex degree k. Define the generating function

Q(x, y, z) =
∑

i,j,k≥2

Qi,j,kx
i−1yj−1zk.

Similarly define Q̄i,j,k and Q̄(x, y, z) for rooted root-simple quadrangulations. By Lemma 4
and [8, (3.8)], we have

Q2(x, y, z) + ((1 − z)(1 − xz) + yz − zQ(x, y, 1)) Q(x, y, z)
= yz2(x(1 − z) + Q(x, y, 1)). (1)

Also from [8], we have
Q(x, y, 1) = uv(1 − u − v), (2)

where u and v are unique power series in x and y defined by

x = u(1 − v)2, y = v(1 − u)2. (3)

We note that Q(x, y, x) are now determined by (1)
Let C̄i,j,k be the number of rooted simple circuit maps with i vertices, j faces and root face

degree k, and let
C̄(X,Y, Z) =

∑
Ci,j,kX

i−1Y j−1Zk.

Define C(X,Y, Z) analogously for rooted circuit maps with at least 3 vertices. We have

Theorem 1 Let

X = Q(x, y, 1)/y, Y = Q(x, y, 1)/x, Z = xyz/Q(x, y, 1).

Then

C(X,Y, Z) = Q(x, y, z), (4)
C̄(X,Y, Z(1 + Y )) = C(X,Y, Z) − XY (1 + Y )Z2. (5)

Proof: For any rooted quadrangulation Q, call a root-separating quadrangle maximal if it is
not inside another root-separating quadrangle. It is easy to see that the interiors of maximal
root-separating quadrangles are pairwise disjoint. Therefore, removing all vertices and edges in
the interior of each maximal root-separating quadrangle yields a root-simple quadrangulation,
and this process can be reversed by replacing each face of a root-simple quadrangulation, that
is not incident with the root vertex, with an arbitrary quadrangulation.

Hence

Q(x, y, z) =
∑

Q̄i,j,kx
i−1yj−1zk (Q(x, y, 1)/xy)i+j−2−k

= Q̄(Q(x, y, 1)/y,Q(x, y, 1)/x, xyz/Q(x, y, 1)).

Now (4) follows from Lemma 4. We Note that there are exactly two circuit maps with two
vertices, the one with two parallel edges and the other one with three parallel edges. Also
circuit maps with more than two vertices can be generated from simple circuit graphs with
more than two vertices by replacing some edges on the root face with a digon. This gives (5).
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Let c̄n,k and cn,k be the number of rooted circuit maps and rooted simple circuit maps,
respectively, that have n edges and root face degree k. It follows from Euler’s formula for
planar maps that

C(X,X,Z) =
∑

cn,kX
nZk, (6)

C̄(X,X,Z) =
∑

c̄n,kX
nZk. (7)

Setting u = v in (2) and (3), we obtain x = y and

x = u(1 − u)2, Q(x, x, 1) = u2(1 − 2u). (8)

Setting u = v and Z = 1, we obtain X = Y = u(1−2u)
(1−u)2

, z = (1 − 2u)(1 − u)−4, and

C(X,X, 1) =
u(3u2 − 3u + 1)(u3 − u2 − 2u + 1)

2(1 − u)6

−u(u2 − 3u + 1)
2(1 − u)6

√
(u3 − u2 − 2u + 1)(1 − 6u + 11u2 − 7u3)

= X2 + 2X3 + 4X4 + 10X5 + 27X6 + 79X7 + 243X8 + · · · .

Figure 3: A list of small rooted circuit maps

Let x0 > 0 be the singularity of C(X,X, 1) closest to the origin. We find that x0 is
determined by the equations

X =
u(1 − 2u)
(1 − u)2

, 1 − 6u + 11u2 − 7u3 = 0.

We obtain

x0 = −(1/6)(100 + 12
√

69)1/3 − 2/(3(100 + 12
√

69)1/3) + 4/3 .= 0.24512233. (9)
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Near X = x0, we have

C(X,X, 1) = −a1(1 − X/x0)1/2 + a2(1 − X/x0) + O
(
(1 − X/x0)3/2

)
,

where a1
.= 0.147041065.

Hence
Cn ∼ a1

2
√

π
n−3/2x−n

0 .

We shall prove the following

Theorem 2 (i) The number of rooted simple circuit maps is asymptotic to

6
25

√
π

n−5/24n.

(ii) The number of rooted circuit maps is asymptotic to

0.147
2
√

π
n−3/24.08n.

To obtain C̄(X,X, 1), we set u = v and Z = 1/(1 + Y ). Then

C̄(X,X, 1) = Q(x, x, z) − X2

1 + X
,

where
z =

1 − 2u

(1 − u)4
.

Thus

Q(x, x, z) =
u2(1 − 2u − u2)
(1 − u − u2)2

,

and

C̄(X,X, 1) =
u2(1 − 2u − u2)
(1 − u − u2)2

− X2

1 + X
,

where

u =
1 −

√
1 − 4X

3 −
√

1 − 4X
.

Using Maple, we obtain the following expansion

C̄(X,X, 1) = X3 + X4 + 3X5 + 7X6 + 19X7 + 54X8 + · · ·

It follows that the dominant singularity of C(X,X, 1) is X = 1/4 at which C(X,X, 1) has
the following asymptotic expansion

C(X,X, 1) +
X2

1 + X
= 2/25 − (36/125)(1 − 4X) + (8/25)(1 − 4X)3/2 + O

(
(1 − 4X)2

)
.

Hence
cn ∼ 6

25
√

π
n−5/24n.

It is also interesting to compare cn with the number of rooted 2-connected simple maps.
The following result may not be new; however, we are unable to find it in the literature, so we
include its proof here for self completeness.
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Lemma 1 The number of rooted 2-connected simple maps is asymptotic to

352
675

√
1

15π
n−5/2(729/128)n.

Proof: Let B(x) be the generating function for rooted 2-connected maps, and B̄(x) for rooted
2-connected simple maps. Then

B(x) = Q(x, x, 1) + x = u(1 − u − u2), x = u(1 − u)2.

Since each rooted 2-connected map can be obtained from a rooted 2-connected simple map by
replacing some edges with a rooted 2-connected map, we have B(x) = B̄(x(1 + B(x))). This
gives the following parametric expression for B̄(X):

B̄(X) = u(1 − u − u2), X = u(1 − u)3(1 + u)2.

Hence u and B̄ are both algebraic functions of X. The dominant singularity of u(X) and
B̄(X) is obtained by solving

X = u(1 − u)3(1 + u)2, X ′(u) = 0,

which gives u = 1/3 and X = 128/729. Also B̄(X) has the following asymptotic expansion at
X = 128/729:

B̄(X) =
5
27

− 32
135

(
1 − 729

128
X

)
+

1408
√

15
30375

(
1 − 729

128
X

)3/2

+ · · · .

Now the lemma follows immediately from Darboux’s theorem.
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