Some results concerning non-separating subgraphs in k-connected graphs

Shinya Fujita* and Ken-Ichi Kawarabayashi ${ }^{\dagger}$

1. Introduction

All graphs considered here are finite, undirected, and without loops or multiple edges. We report some recent results on non-separating subgraphs in highly connected graphs. Here a non-separating subgraph denotes a subgraph whose deletion keeps high connectivity. Note that if we delete a contractible edge in a k-connected graph, the resulting graph will be $(k-1)$-connected. Hence, the existence of a contractible subgraph shows the existence of a non-separating subgaph at the same time. In this talk, we focus on the existence of non-separating subgraphs in highly connected graphs, and introduce some related results.

2. Degree conditions for removable edges

The old well-known result of Chartrand, Kaugars and Lick [1] says that every k-connected graph G with minimum degree at least $3 k / 2$ has a vertex v such that $G-v$ is still k-connected. This theorem tells us that if we want to find a vertex v in a k-connected graph G such that $G-v$ is still k-connected, then the minimum degree $3 k / 2$ is enough. But what if we want to find an edge e such that $G-V(e)$ is still k-connected? What minimum degree condition is necessary? Motivated by this question, we shall prove the following result.

Theorem 2.1 Let k be an integer with $k \geq 2$. Suppose G is a k-connected graph with minimum degree at least $\lfloor 3 k / 2\rfloor+2$. Then G has an edge e such that $G-V(e)$ is still k-connected.

3. Contractible triples

It is well known that every 3 -connected graph of order 5 or more has an edge whose contraction still results in a 3 -connected graph (see [10]). McCuaig and Ota [8] has extended this result by showing that every 3 -connected graph with at least 9

[^0]vertices has a connected graph of order 3 whose contraction results in a 3 -connected graph. This result was further extended by Kriesell [7].

Our purpose is to extend these results to a higher connected graph. But, as Thomassen [9] pointed out, there exist infinitely many k-connected k-regular graphs which do not have an edge whose contraction results in a k-connected graph for $k \geq 4$. Therefore, we have to set a modest goal: we would like to consider a k connected graph which has either some fixed subgraph or a connected subgraph of order 3 whose contraction results in a k-connected graph. Let us remind that Thomassen [9] proved that every k-connected graph has either a contractible edge or a triangle. This result was further extended by Kawarabayashi [6]. There it is proved that every k-connected graph contains either a contractible maximal clique with order at most 3 or a K_{4}^{-}. However, in order to achieve our goal, a triangle or a K_{4}^{-}does not seem enough to exclude. Our result is the following:
Theorem 3.1 Let k be an integer with $k \geq 2$. If G is k-connected, then G contains either C_{4} or a connected subgraph of order 3 whose deletion results in a $(k-1)$ connected graph.

In this talk, we will mention about the details of the above results and also we will further report some other latest results in $[2,3,4,5]$.

References

[1] G. Chartrand, A. Kaigars amd D.R. Lick, Critically n-connected graphs, Proc. Amer. Math. Soc. 32 (1972), 63-68.
[2] S. Fujita and K. Kawarabayashi, Contractible elements in k-connected graphs not containing some specified graphs, J. Graph Theory 58 (2008), 97-109.
[3] S. Fujita and K. Kawarabayashi, Connectivity keeping edges in graphs with large minimum degree, J. Combin. Theory Ser. B 98 (2008), 805-811.
[4] S. Fujita and K. Kawarabayashi, Note on non-separating and removable cycles in highly connected graphs, Discrete Applied Math., in press.
[5] S. Fujita and K. Kawarabayashi, Contractible triples in highly connected graphs, to appear in Annals of Combinatorics.
[6] K. Kawarabayashi, Contractible edges and triangles in k-connected graphs, J. Combin. Theory Ser. B 85 (2002), 207-221.
[7] M. Kriesell, Contractible subgraphs in 3-connected graphs, J. Combin. Theory Ser. B 80 (2000), 32-48.
[8] W. McCuaing and K. Ota, Contractible triples in 3-connected graphs. J. Combin. Theory Ser. B 60 (1994), 308-314.
[9] C. Thomassen, Non-separating cycles in k-connected graphs, J. Graph Theory 5 (1981), 351-354.
[10] W. Tutte, How to draw a graph, Proc. London Math. Soc. 13 (1963), 743-767.

[^0]: *Department of Mathematics, Gunma National College of Technology, Maebashi-shi, Gunma 371-8530, JAPAN. E-mail: shinyaa@mti.biglobe.ne.jp
 ${ }^{\dagger}$ National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, JAPAN. E-mail: k_keniti@nii.ac.jp

