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Abstract

Transition graphs are an algebraic way of constructing embeddings of

graphs in surfaces. They are equivalent to embedded voltage graphs but

are more convenient in certain situations. We describe how transition

graphs can be used to construct embeddings and discuss some of their

advantages. As applications, we discuss how transition graphs can be used

to construct embeddings of complete bipartite graphs with very specific

properties. From these we can construct minimum genus embeddings of

certain complete tripartite graphs and other related graphs, such as joins

of a complete graph with an empty graph.

1 Introduction

In many parts of mathematics, the choice of representation of a mathematical
structure can make it easier or harder to use. A classic example in topological
graph theory is the use of current graphs to construct minimum genus embed-
dings of complete graphs in the proof of the Heawood Map Coloring Theorem
[5]. Current graphs are not the most direct algebraic construction for describ-
ing a graph embedding. Embedded voltage graphs are of equal power (being
related to current graphs by duality) and are more straightforward. However,
current graphs were invented and used earlier than voltage graphs precisely be-
cause they were convenient for constructing triangular embeddings of complete
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graphs. Voltage graphs would have been much harder to manipulate for this
particular purpose.

Over the past few years we have been working on determining the mini-
mum genus of complete tripartite graphs and related graphs, such as joins of a
complete graph with an empty graph. In this situation, neither voltage graphs
nor current graphs are convenient. Instead, we use a third type of algebraic
construction for graph embeddings, which we call transition graphs . Our goal
here is to explain what transition graphs are, and why they are convenient for
constructing certain types of graph embedding.

2 What is a transition graph?

Transition graphs are an algebraic construction of equal power to embedded
voltage graphs or their duals, current graphs (voltage and current graphs are
described in [4]). In fact a transition graph can be regarded as just the me-
dial graph of an embedded voltage graph. Archdeacon [1] gave an algebraic
construction for graph embeddings using medial graphs, but his construction
applies voltages to the edges of the medial graph, whereas ours applies voltages
to the vertices of the medial graph, so the constructions are different.

A formal definition of general transition graphs can be found in [3]. Here we
proceed a less formally, using an example, shown in Figure 1. For a transition
graph we need a group Γ, a directed graph D in which every vertex has indegree
and outdegree 2, and a partition of the edges of D into directed closed walks.
For each vertex v of D one of the two directed walks passing through v should
be designated as the reference at v, v should be designated as either untwisted
(open) or twisted (solid), and v should be labelled with an element of Γ, called
its voltage. From this we will obtain a derived graph embedding.

In Figure 1 there are only two directed closed walks, A (solid) and B
(dashed), which are actually directed cycles, and every vertex is incident with
both A and B. Thus, we may take A to be the reference at every vertex. Ev-
ery element of Γ is used exactly once as the label of a vertex. None of these
properties is necessary for general transition graphs. But they imply that the
derived graph is complete bipartite, as we shall see. Moreover, the group (Z8)
is abelian and even cyclic. If all of the properties in this paragraph are satisfied
we say we have a cyclic transition graph.

Although cyclic transition graphs are a very special case, they allow us to
construct embeddings of Km,m which can be extended to embeddings of related
graphs such as Km + Km, or Km,m,n with n ≤ m. Using other techniques,
the embeddings of Km,m,n can be further extended to embeddings of general
complete tripartite graphs Kl,m,n with l ≥ m ≥ n.
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Figure 1

The derived graph embedding is obtained from the transition graph as fol-
lows.

Vertices. Each directed closed walk yields |Γ| vertices in the derived graph,
indexed by the elements of Γ. So in the example, the derived graph has sixteen
vertices: ai, i ∈ Z8, from A, and bi, i ∈ Z8, from B.

Edges. Each vertex v of the transition graph generates |Γ| edges in the
derived graph, going between the two classes of vertices corresponding to the
directed closed walks through v. The exact edges depend on the voltage of v.
In the example, a vertex of label k represents 8 edges from ai (since A is the
reference) to bi+k for i ∈ Z8. For example, the vertex labelled 2 represents the
family of edges a0b2, a1b3, . . ., a7b1 which have slope equal to 2.

Since each k ∈ Z8 occurs exactly once as a vertex label, we get each edge
of the form aibi+k exactly once in the derived graph, showing that the derived
graph of the example is K8,8.

Topological information. The derived embedding is defined to be cellular:
each face is an open 2-cell. The directed closed walks indicate the rotation order
of the edges around each class of vertex. In the example, the solid directed cycle
A is (01237654), so around each vertex ai the rotation of edges is in the order
aibi, aibi+1, aibi+2, aibi+3, aibi+7, aibi+6, aibi+5, aibi+4. Similarly the dashed
cycle B is (03217456), so around each vertex bi the rotation of edges is in the
order aibi, ai−3bi, ai−2bi, ai−1bi, ai−7bi, ai−4bi, ai−5bi, ai−6bi: the minus sign in
each ai−kbi is needed because A, not B, is the reference at each vertex labelled
k.

Moreover, solid vertices correspond to edges in the derived graph that are
‘twisted’ or orientation reversing. Since the vertex labelled 2 is solid, the edges
of the form aibi+2 are twisted in the embedding, meaning that we must reverse
the direction in which we follow the rotation around a vertex when we traverse
one of these edges.

The above completely describes the derived embedding. A procedure for
tracing the faces can be given, but for the examples we present there will be a
simpler way of determining the faces of the resulting embedding, as we describe
in Section 4 below.
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3 Advantages of transition graphs

Transition graphs have the following advantages.

• Transition graphs can be built up from small patterns representing par-
ticular groups of faces.

• Transition graphs can be used to build whole families of embeddings at
once, by making substitutions involving small patterns.

• Transition graphs can be used to build relative (partial) embeddings,
which can be completed with non-algebraic constructions, in situations
where a completely algebraic construction is impossible.

• Transition graphs allow very fine tuning of the properties of an embedding,
which may then allow further manipulations to be performed.

We illustrate these in the following sections. All of our examples will involve
cyclic transition graphs. Thus, the group is henceforth always assumed to be
Zm where m is the number of vertices in the transition graph. We are always
constructing embeddings of Km,m, and we often modify these embeddings to
obtain embeddings of related graphs such as Km,m,n.

4 Using small patterns

Transition graphs can be built up from small ‘patterns’ which represent partic-
ular types of faces in the derived embedding. In particular, we commonly use
the patterns shown in Figure 2 in cyclic transition graphs with group Zm and
derived graph Km,m.
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Figure 2

Each type H pattern produces one hamilton cycle face in Km,m, of the form
(a0bi+kakbi+2ka2k . . . bi). Type I patterns occur only when m is even, and pro-
duce m/2 faces of degree 4 of the form (ajbi+j+m/2aj+m/2bi+j). Type X patterns
produce m faces of degree 4, as do type V patterns. Type V patterns require
a solid (twisted) vertex and always produce a nonorientable embedding. The
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other patterns may be used in constructing either orientable or nonorientable
embeddings. For simplicity, we frequently use patterns of type H, X or V for
which k = 1.

Our original example, Figure 1, can be thought of as built up of two type
H patterns (with vertices 4, 5 and 5, 6), two type X patterns (one with vertices
0, 1, 6, 7 and the other with vertices 0, 3, 4, 7), and one type V pattern (with
vertices 1, 2, 3). Therefore, it corresponds to an embedding of K8,8 with two
hamilton cycle faces (from the type H patterns) and 24 faces that are 4-cycles
(from the type X and type V patterns). Since a type V pattern is used, the
embedding is nonorientable. By inserting a vertex joined to all original vertices
in each of the two hamilton cycle faces, we obtain an embedding of K8,8,2 which
is a minimum nonorientable genus embedding.

5 Families of embeddings

Transition graphs can be used to construct entire families of embeddings all at
once, by making suitable pattern substitutions.

At left in Figure 3 we see a cyclic transition graph built from two type I
patterns and ten type H patterns. The derived embedding is an embedding of
K12,12 with ten hamilton cycle faces and twelve 4-cycle faces. It is orientable
because there are no twisted vertices in the transition graph. By inserting new
vertices in the ten hamilton cycle faces, we obtain a minimum orientable genus
embedding of K12,12,10.
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Figure 3

However, we can obtain other embeddings by making substitutions. In the
middle of Figure 3 we have substituted three V patterns for six H patterns,
thereby replacing six hamilton cycle faces by 36 4-cycle faces in the derived
embedding of K12,12. By adding vertices in the four remaining hamilton cycle
faces, we obtain a minimum nonorientable genus embedding of K12,12,4.

Also, at the right of Figure 3 we have substituted two X patterns for four H
patterns, thereby replacing four hamilton cycle faces by 24 4-cycle faces in the
derived embedding of K12,12. By adding vertices in the six remaining hamilton
cycle faces, we obtain a minimum orientable genus embedding of K12,12,6.

These illustrate typical substitutions, replacing two H patterns at a time
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by a V pattern to construct families of nonorientable embeddings, or replacing
four H patterns at a time by two X patterns, to construct families of orientable
embeddings.

6 Relative embeddings and gadgets

Sometimes it is not possible to construct an embedding completely by algebraic
means. We can use partial transition graphs to construct embeddings by a
combination of algebraic and nonalgebraic techniques.

For example, suppose we wish to construct a minimum genus nonorientable
embedding of K9,9,4. Using transition graphs we might hope to construct an
embedding of K9,9 with four hamilton cycle faces into which we could insert four
new vertices, and with all remaining faces being 4-cycles. Unfortunately, simple
counting arguments show that four hamilton cycles together with an integral
number of 4-cycles cannot cover every edge of K9,9 twice, so this is impossible.
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Figure 4

Instead, we use the partial transition graph shown at left in Figure 4 to
construct a relative (or partial) embedding of K9,9. We then complete this by
adding the faces shown at middle and right in Figure 4, which we call a gadget .
We then have an embedding with three hamilton cycle faces, one face that is a
spanning closed walk of length 20, and with all remaining faces being 4-cycles.
Adding new vertices in the hamilton cycle faces and the face of degree 20 gives
a minimum nonorientable genus embedding of K9,9,4.

7 Embeddings with finely tuned properties

Transition graphs make it possible to control the fine details of the derived
embedding, in such a way that we may be able to perform further manipulations
to obtain useful embeddings. One such manipulation is adding extra edges to
the embedded graph without increasing the genus of the surface.
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Figure 5

For example, in Figure 5 we see a cyclic transition graph made up of type
I and X patterns only, that gives an orientable embedding of K18,18 in which
all faces are 4-cycles. This is then a minimum orientable genus embedding of
K18,18. This transition graph has been designed to have a special property:
every possible solid edge length (voltage of head minus voltage of tail) between
1 and 17 occurs at least once. The existence of a solid edge of length k means
that there is a face containing both bi and bi+k for every i. But for this transition
graph k may take any nonzero value, so there is a 4-cycle face containing every
pair of distinct vertices bi and bj. We may therefore add an edge joining every
pair bi and bj, to obtain an embedding on the same surface of K18 + K18, the
join of the empty graph K18 with the complete graph K18. This is a minimum
orientable genus embedding of that graph.

8 Applications

We have applied cyclic transition graphs, together with other techniques, to
obtain the nonorientable genus of all complete tripartite graphs [3]. Two of us
(Ellingham and Stephens) have also used cyclic transition graphs to obtain the
orientable genus of Km+Kn for n even and m ≥ n [2]. We have been working on
determining the orientable genus of all complete tripartite graphs using cyclic
transition graphs, and we have unpublished results for Kl,m,n, l ≥ m ≥ n, that
resolve all cases except for three small graphs (K12,11,8, K13,11,8 and K14,11,8)
and the general case where m ≡ 1 (mod 4) and n ≡ 0 (mod 4).

As we have shown, transition graphs are a useful and flexible tool for con-
structing graph embeddings. We hope that many other applications will be
found for them in the future.
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