『数学セミナー』 2001年1月号
--- 21世紀の幕開けとともに, 新しい小説のかたちMF(数学小説, Mathematical Fiction)をもりたてていきたいと思い, この対談を企画しました. 今までのMFがSFの一分野に過ぎなかったととらえるなら, 来る世紀はMFとして独り立ちできるように応援していきたいと考えています. すでにMFの著作を世に問うているお二方に, MFの魅力とは, そして, その目指すところを語り合っていただきたいと思います.
根上 SからMになっちゃった感じですね (笑).
瀬山 根上さんはSFというのを昔から読んでいるんですか.
根上 ぼくは基本的に本を読まないタチなので.
中学生の頃, 男の子たるものSFに興味を持たなければいけないという 強迫観念ってなかったですか. 当時のぼくにはそれがあって, 本はもっていたけど, 読んだものは数少ないです.
瀬山 根上さんは1957年生まれですね. ぼくが46年だから, 11年のタイムラグがある. 『SFマガジン』が創刊されたのが, 中学3年のときかな. 創刊号から大学1年生ぐらいまでずっと読者だったわけです. だから, 強迫観念というより, そもそもSFが日本に定着し始めたと同時に SFを読みはじめたという感じなんですね.
根上 ぼくは幼稚園のときに「鉄腕アトム」(64年)ですからね. 当時は, 「ミクロの決死圏」(66年)とか, 「禁断の惑星」(56年)のようなSF映画が結構ありましたね. それから洋物のテレビ番組でも, SFをたくさんやっていた時代です.
瀬山 SFのジャンルのなかに非常に理屈っぽいSFというのがあって, そのなかで多少数学的なアイデアなりを扱っていたものがあったんです.
代表的なのが『第四次元の小説』(59年, 荒地出版. 現在は小学館)という短編集. 最初に出たのが, ぼくが中学2年のときだったかな. 今でも覚えているけど, 朝日新聞が文化欄で「不思議な小説現れる」というようなことで 『第四次元の小説』について書いていたんですよ. メビウスの帯やクラインの壺を写真とかイラストで載せていて. その記事を読んで, とてもおもしろそうな小説だと思ってすぐに本屋さんに行った.
どうやらぼくが数学を選んだのは, 『第四次元の小説』との出会いが非常に大きかったような気がする. たぶんそれが自分の数学観をいちばん底のほうで規定しちゃってるんですね.
根上 そういう意味だと, ぼくには, 講談社ブルーバックスの『第四次元の世界』が重要な体験をつくっている気がします. 自分自身の能力を高めて直観する世界というのが, 比較的ぼくの行動の中心にあるでしょう. だから, 小説を書くときは, 数学的なロジックというよりは, 数学的感性みたいなほうに, 重きをおいているわけです.
◆ 『第四次元の小説』----MFの古典
瀬山 これは, 数学小説の古典で, 三浦朱門さんが訳し, 「訳者あと書き」を書いていました. ところが, 初版本は「訳者あと書き」にしろ帯にしろ, 「想像力と数学というまったく異質なものが結びついた小説世界」 というようなことが出てくる. 想像力と数学がなんで結びつかないの, という感じがしますね. それから「訳者あと書き」には, 数学小説が好きな人間に数学好きな人間はいないと書いてあるわけ. それは, 探偵小説が好きな人間に犯罪者はいないのと同じように, 数学小説が好きな人間に数学好きな者はいないはずである, と三浦さんは書いている.
根上 その感じ, わかりますよ. これが後々議論される, ある小説をMFとするかしないかの一つの尺度になると思います. たとえば『第三の理』を本誌で連載しましたよね. そのときに読者の感想をちょっと見せてもらったんだけど, おもしろがる人とおもしろがらない人がいるんです. おもしろがる人の反応はぼくの期待どおりだったけど, そうでない人は, 「ハノイの塔」という数学の問題によけいなものがついていると思ってしまう.
だから, 数学の先生, 数学者といわれている人たちのみんながみんな, 数学小説を喜ぶかというと, たぶん違うと思いますね. むしろ喜ばない可能性が大きい. 自分たちが専門として参加している数学の世界とは 異質のものだという印象をもっても, 不思議ではないですよ.
瀬山 なるほどね. ところで, 『第四次元の小説』のなかに出てくる「メビウスという名の地下鉄」は, ある地下鉄が, いろんなところにいろんな側線を掘って, 複雑な絡み方をしてしまい, 全体として非常に特異な性質をもってしまう. その地下鉄全体がね. それで, ある電車が地下鉄のなかで消えてしまう. この話には落ちがついていて, そのことを数学的に解説してくれるであろう世界的な位相幾何学者が, その地下鉄に乗っていたことがわかる. 彼が戻ってくれば, この現象を解明してくれるだろうと待っていたが, 彼はどこかの駅で降りてしまい, 結局, 戻ってきた電車の中に彼は乗っていない. どこに行ったのかもわからない.
根上 数学的メカニズムはともかくとして, 理解が言語的な感じがしますね.
瀬山 数学用語を散りばめた幻想小説. だから, 数学の理論的な何かがあるわけではない.
◆ MFなもの. MFでないもの.
瀬山 ぼくは, MFというのをいわば小説として読める「数学解説書」として考えているんですね. だから, 説明にある程度の粗さはあってもいい. つまり, 厳密性を追求しなくてもいい. だけど, 中に書かれている数学的な事象に関しては正確に書かれていること. それが全体として数学のストーリーのなかに埋め込まれていること.
根上 たしかに, 『数学者シャーロック・ホームズ』(日本評論社)はそうなっていますね.
よく考えてみると, 世の中に数学ネタものって結構たくさんあります. ちょっと悪口的に「おちゃらけ学習マンガ系」とぼくが言っているジャンルです. それは, 一つのストーリーの中に必ず博士がいて, その人のところに行けば数学的なことがいろいろわかる. 他に, ちょっと間抜けないたずらっ子の男の子と, ちょっと利口そうなお姉さんがいて…, みたいに掛け合いでずっと説明していくというパターンですが, こういうのはたくさんあるでしょう. それが悪いと言っているわけではないんですが.
瀬山 なるほど.
根上 でも, ぼくたちの基準はこれこれだから, 残念だけどあなたたちのはMFではない, というふうに言いたい. 一方で最低限数学の香りがすればいいのではとも思うんですが. その線引きをどうしたものでしょう.
瀬山 少なくともフィクションというからには, やはり小説としておもしろくなければだめだと思う. 根上さんが言うように, 博士が出てきて, 一つの数学的なものに対してその博士が, 子どもたちにお話口調で解説するというのは, ただ単に口語体で書かれた数学の本です. 少なくともMathematical Fictionというからには, 本当のSFであり本当のミステリであるようなものでないと. 小説として読んでおもしろくて, 読んだあと, ここに書かれているある種の数学の理論に対して, 厳密な証明はないかもしれないけれども, 自分なりの理解が得られるようなもの. そういうようなものを考えているんですね.
根上 それはぼくが二つあると思っているMFのあり方のうちの一つです.
数学的理解も込みにしてストーリーもおもしろくないと, とりあえずブラックホールだ, タイムマシンだ, といっておけばSFだみたいな感じのものになってしまう. まやかしのサイエンスではだめで, 本当のサイエンスに近いところでいろいろな作品がつくられるようになってきて, たとえば『コンタクト』(新潮文庫)だったら カール・セーガンのような本物の科学者が書くわけです.
瀬山 それはある種, 新しい物理学の成果というか天文学の成果をきちっと踏まえているからです. 数学だって, そういう最新の成果などが, うまく小説のなかに取り込めればおもしろいんですけどね.
根上 そうです, そうです.
瀬山 スタニスワフ・レムという作家が短編「手記」 (『素晴らしきレムの世界』講談社)で, たとえばゲーデルの不完全性定理みたいなものを扱った SFというか小説を書いているんです. 巨大なコンピュータみたいなものが自己参照を繰り返すことによって 神みたいな存在になるという話とかね. こういうのは, 数学用語がちらっと出てくるということはあるけど, 実際は数学用語を散りばめた小説とはちょっと違う. でも, 読んでいるほうは, たとえばゲーデルの不完全性定理に少しでも関心があって, 知っている人が読んでいると, いかにもそこに書かれているSFが不完全性定理みたいな感じだなと思うとかね.
ここで出た自己参照, 自己言及というのは, 小説の主題としてすごくおもしろいと思う.
ほかにも, 夢野久作の『ドグラ・マグラ』(社会思想社)という奇妙な小説は, 読んでいるとその中に「ドグラ・マグラ」という小説が出てくるんです. 未完成の原稿としてこれをある人が書いたんですよ, というので手に取ってみると「ドグラ・マグラ」という小説で, 読みはじめると, 最初の1行は本当の『ドグラ・マグラ』の1行目なんです. なんと自分自身が入れ子になっている. そして最後の終わり方も, 小説の冒頭に戻るような感じで終わる.
『ドグラ・マグラ』は別に数学用語が出てくるわけでも何でもなく, ただ単に非常に不思議な小説だけれども, 読んでいるととても数学心を刺激するわけ.
根上 自己参照というか, 再帰だと思いますが, 再帰で何か書けないかなと考えてはいるけど, まだアイデアがない.
瀬山 それからフリオ・コルタサルの『石蹴り遊び』(集英社文庫)というのが, またちょっとおもしろい. 根上さんは絶対に気に入ると思うけど, かなり細かい章からできている話です. ただ読むとふつうの小説. でも, ところどころにこういうふうに読めという指示がある. たとえば, 1章を読んだら5章を読みなさい, 5章を読んだら7章を読んで, 2章に戻って13章に行け, とかね.
根上 ちょっとやられたな. ぼくはいろいろ考えているうちに, 専門がグラフ理論だから, 各章をグラフの頂点にして, ハミルトンサイクルを検索しろとか, 一筆書きをせよという指示に従って, 本全体を読めるというようなストーリーが仕立てられないかなと思っていたんです.
瀬山 あっ, そう. そういう感じ. ただ, 1章から順番に読めば, ふつうの小説として読める. だけど, 行ったり来たりしても読める.
根上 お話自身は数学的ですね.
瀬山 数学的といえば数学的ですよね. たとえば『第四次元の小説』のようにフェルマーの定理や 超立方体というのが出てくるわけでもない. だけど, 読んでいると, かなり数学的なおもしろさみたいなものを小説仕立てで書いているという感じがする. だから根上さんも各章ごとに一筆書きでできる小説というのを.
根上 それはストーリーの構造が数学だという意味ですよ. ストーリーまでは思いついていないけど, せっかく自分がグラフ理論の専門家だと言っているんだから, それを題材にした数学小説ができないかなと思っている. そういうのは, ふつうの人も無理なく読めますよね.
瀬山 そうですね.
根上 でも, それだとちょっと悔しい部分もあるわけです. 悔しいというのはちょっと表現が違うかもしれませんが, 数学的なことをちゃんと理解している人だからこそ, おもしろがることができるというものではない. それだと, 文芸評論家が評論できる. そこがおもしろくないんだ. 「評論家たち, わかっているふりしてダメじゃん」というような作品ではないでしょう.
SFだって, これは想像だけど, ふつうの小説を書く人からすれば, ある意味で蔑視されていた時期だってあるでしょう. それと同じですよ. でも, SFを愛好する人が出てきて, 科学的なことに関心をもつ人たち, 従来のデータベースと違うデータベースをもった人たちが 読むとおもしろがれるというスタイル. そういう作品が出てくると, 違うジャンルとして成り立つのではないかな. 同じ文学のなかのちょっと変わったものではなくて, 違うジャンルとして誕生したという感じがする.
逆にいうと, どうもあいつらがおもしろがっているから, 数学を勉強するとあのジャンルに入れるんだと思って, 数学を勉強しようとする人も少しは誘導できるとかね.
瀬山 ああ, なるほど.
根上 「ヤーイ, お前たち, 数学を知らないからおもしろくないだろう」と言って. MFファンが町中や電車のなかで読んでいて, 「なんかあいつら, おもしろがっているな」と思えるような作品になっているといいかなという気がする.
瀬山 搦手からの数学の底上げというか, 宣伝みたいなものですけどね. でも, なるほど.
ところで, 東京理科大の大森英樹さんが『平面人からの手紙』(岩波書店) というのを書いている.
あれは数学小説のスタイルで, 帯に「わくわく超おもしろい数学の物語」と書いてある. ぼくは読んだけど, MFとしては, まだ数学の部分が少し硬いというか, 大森さんが言っているほどにはやさしく書けているかどうか, というところがある. だけど, 試みている人がいるわけです.
それから『超現実数』(海鳴社). あのTeXを作ったクヌースが書いた本です. それはコンウェイの超現実数についての小説仕立ての解説書になっている. これははっきりと数学小説と銘打っていた. 数学の解説書といえば解説書だけれども, 少なくともフィクション仕立てになっている.
ああいうふうに, 数学者も今まで小説仕立てで数学をなんとか解説しようと いうような試みをやってきたんですよ. だれか1人が, とにかくベストセラーになるようなものを書くと, 完璧に認知されると思う.
根上 それはそのとおりなんですけどね.
瀬山 根上さんの『第三の理』(日本評論社)だって, どの本屋さんに行っても小説の棚にはないじゃないですか, 残念ながら数学書の棚になっちゃうんだよね.
根上 そう. それにさっきも言ったように, 数学が好きな人は数学小説なんて嫌いだという傾向がある.
瀬山 そういうものが好きな人もいると思うんです. 今までSFという小説のジャンルの中で数学的な内容を 扱ったものに興味を示して読んできている人, あるいはミステリのジャンルのなかで 数学的なものに興味を示して読んできている人というのは, ある一定のレベルでいるわけです. もし, 数学小説というものが最初にアピールできるとしたら, そこだと思う.
それから, MFの一つのモデルになりうるかどうか, わからないけれども, キャスティという数学者の『ケンブリッジ・クインテット』(新潮社) という小説がある. 一晩, ケンブリッジ大学にチューリングとヴィトゲンシュタイン, 物理学者のスノウ, シュレーディンガー, 遺伝学者のホールデインというノーベル賞級の5人が集まって お茶を飲みながら人工知能についての対話をする. 会ったという事実はもちろんないが, その5人はほぼ時代を同じくしている.
中に書かれている, たとえばヴィトゲンシュタインが言っている話とか, チューリングが言っている話というのは, キャスティが丹念にヴィトゲンシュタインや チューリングの小説なり論文なりを読んで, ほとんど正確に彼らの思想を再現しているわけです.
根上 その人が言ったそのままを書くんじゃなくて.
瀬山 ええ. これはMFの一つの方向ではないかなと思う. たとえば, フェルマーの最終定理の証明でもいいんですよ. 証明の細部はやはりプロの数学者でないととてもたどれないでしょう. だけど, その証明に至るまでのいろいろな仮定や谷山-志村予想などに関しても, 素人が読んでも何となく, こういうことがあって, それでこういうふうになったのだなというのがわかるような感じで, フェルマーの最終定理の証明を小説化してみるという感じ. だから, 数学の一般向け解説書だけれども, 小説にもなっている.
◆ 和算系MF
根上 そうだとすると, たとえば『円周率を計算した男』(鳴海風著, 新人物往来社)がMFになってくるのでしょうね.
瀬山 ああいうのはMFの一つの行き方としておもしろかったと思う. 和算の話だけども, あれを読んで数学そのものに多少なりとも関心をもつ人が出てくると思うんです. 和算系のMFの最初が『算学奇人伝』(永井義男著, TBSブリタリカ). そのあと, 金重明の『算学武芸帳』と 『戊辰算学戦記』(いずれも朝日新聞社)を出していますね.
和算ものが結構売れたというのは, 本を読む人たちの間で, まったく新しい, 非常に新鮮な題材だと思う雰囲気があったと思うんです. 今まで数学が, ミステリやフィクションの題材として取り上げられることがなかったわけだから, うまく取り上げると非常に新鮮な題材になって, 結構売れるのではないか.
根上 その希望的観測はわかるけれど, やはり和算だから売れたんですよ. なぜかというと, 数学のことはみんな知っている. もちろん, 専門的な内容ではありませんよ. 一方, ふつうの人には和算という概念はない. だから新鮮なんです. 多くの人は数学に対していやな感じというのがあって, そんなもので小説を書くなよと思うでしょうね.
だから, 売れるようにするためには, どう数学ではないか, という演出を考えないといけない. さっき悔しいと言いましたが, 自己参照があったりというのは数学ということを 正面にすえていないけれどもMFだなという感じがする. ある意味では成功しています.
◆ マンガ版MF
根上 その昔, ボツになった企画で, ぼくが書いた『トポロジカル宇宙』のマンガ版というのがあったんです. プラトンから始まって歴代の人たちが, 宇宙のかたちを直観しようとして魂が解放されるまでの, 人類全体のストーリーを書こうと思った. マンガだと, 詳細なことを書かなくていい. 絵でバッと見せておしまい, で済むからできちゃう気がしたんです.
これをちゃんと書き込んで小説にしようと思うとちょっと重たいなあ, という感じで手付かずになっています. たとえば四色問題とハミルトン4元数. ハミルトン4元数は4次元空間のなかの回転を表現することができる数なわけです. それと何かを絡めて4次元空間の話を作ろうと思ったんですよ. ぼくが小説を書くときには, 映像として頭の中に見えているものを記述していく. 映画を見ているようにね. でも, いま言ったような作品を作ろうとすると, ハミルトン卿というのはこれこれの身分でどうのという 設定のディテールを書かないといけないでしょう. それは史実にもある程度のっとっている必要がある. それを実現するのは, かなり膨大な作業になる. できればいいけれども, それだけで食ってはいけない. 片手間にやらざるをえない. だからやはり良いものができない. それに, やはり小説としてのおもしろさが必要だから, 文才の部分も問われちゃう.
瀬山 そうですよね, 当然.
根上 そこのところで訓練を積んできているわけではない. 特にぼくは本を読まないからね. ほんと, 読みごたえのあるものをつくるのは結構大変ですよね.
瀬山 根上さんは本を読まないのに, どうして小説仕立ての数学というか, 数学仕立ての小説というか, それをやろうと思ったんですか. ぼくは, SFにしろミステリにしても, もともと好きなんですけどね.
根上 ぼくは子供の頃, 漫画家志望でした. それで, 頭の中でいろいろストーリーを考えていた. ぼくらの時代, 貧乏のせいもあってなかなかマンガ本を買ってもらえなかった. 1冊買ってもらった『少年マガジン』を何か月も読んで, 「サイボーグ009」みたいなものを描きたいなと思って小学校, 中学校を過ごしていました.
だから描こうと思った. 次の本を読もうじゃなくて, ぼくもこういうものを描きたいと思った. それと「鉄腕アトム」と出会って以来, SFと同じようにマンガも市民権を得ていく歴史を 一緒にたどっているということもある.
それと, マンガと小説のメディア論争というのかな. そのころはメディアなんて言葉は知らなかったけれども, 友達といろいろと議論しました. やはり書き込み方が違うんですよね. 小説として重たくしようと思ったら, 設定とか心理描写のディテールを結構細かく書き込んでいかないと, なんか安っぽい. ただ表面だけストーリーを追っているだけのものになってしまう. 一方, マンガの場合, 「そこに宇宙船が飛んできた」と書くだけでは許されないわけです. ちゃんと自分で宇宙船を設計し, それを画面のなで巨大さを表すような構図をつくって描いていく.
マンガは描くのに時間がかかってしまって. 題名を書いて表紙の絵を描いて終わりという ぼくの作品がいっぱいあるんですよ(笑). 頭の中ではストーリーが展開しているのに, なんだい, こんなんじゃオレは漫画家になれないよと思って, 漫画家は断念しました.
瀬山 でも, 手塚治虫の作品の中にはマンガでしかできない 非常におもしろいストーリーがありますよね. 昔, 手塚治虫は『SFマガジン』に 「SFファンシーフリー」というのを連載していました. 『手塚治虫漫画全集』(講談社)にまとめられています. その中に「そこに指が」というマンガがある. これはSFマンガというか数学マンガですけど, 次元について描いている. アボットの二次元国とか平面国とかいうのと同じだけれども, あんなもの, 目じゃない.
話の最初は何だかよくわからない. これまでの手塚治虫だって, こういうアングルでこういうふうに人間を描いたけど, このマンガはどうしてこんなふうに人間を描いているんだろうと 思いながら読んでいるわけ. そのうちにバーのカウンターで, 「たとえば この本です」といって青年が, 「これは直線だけで構成されている一次元の世界です ぼくたちはこれを書物として見ているが…」と, 線を持ち上げているシーンがある. 「えっ, 何の話?」というふうになるでしょう. そのうちに, 「ぼくたちの世界は…三次元空間にいる生物から見れば 案外 書物みたいなものとして 扱われているかもしれない」という話になる. それで, バーから酔っぱらった男たちが出ていくと, 突然, 目の前に指が出てくる. しかも, そこに「作者註 かならず ここへ指をあてがってページをめくること!」 というキャプションがついている.
根上 洒落てますね.
瀬山 これはたぶんマンガでしかできない次元の話で, 非常によくできていると思う.
MFは数学小説というけれども, 数学マンガというのだって, かなり可能性はありますよ. しかも, ある種の数学的なガジェットだと, マンガのほうが書きやすいかもしれない. たとえば「クラインの壺」を言葉で説明するのは容易なことではないでしょう.
根上 絵で描いたほうがわかりやすい.
瀬山 そう, たいがいの人は一発でなるほどとわかるでしょう. 数学のある種の分野はものすごくイメージ豊かじゃないですか. だから, マンガにするとね.
根上 マンガにしたほうがいいものもたしかにあるのはわかります. 映像にした方がいいものもあるしね.
瀬山 いいんですよ. CGでもいっこうに構わない. さっきの話のように, 電車の中でおもしろそうなマンガを見ている人がいる. 周りからは何かよくわからないけれども, 読んでいる人はてんでおもしろがって読んでいる. すると, 自分だっておもしろがるためには多少何かが必要と思う. CGだって, 単に見ているだけではよくわかんないやと思っていないで, 見る人が見ると, すごくおもしろいCGなんだということがわかるようなものがたくさん出てくれば, 数学の裾野が広がるだろう. こういう思いが強い.
◆ MFで目指すもの
瀬山 当たり前のことではないことをテーマにして数学小説を書こうとすれば, どうしたってどこかで解説調にならざるをえない部分があるでしょう. 書かれていることは当たり前のことだ. だけど, 数学というのはその当たり前のことについて, ああでもない, こうでもないとやるようなところがあるんじゃないかというような感じだから, 書かれていることはよくわかっていることだけど, 議論は新鮮だというスタイルになるかもしれないでしょう.
根上 ジョルダンの閉曲線定理は証明が必要だという意味で.
瀬山 そうそう. こうやって囲いがあるから中と外があるのは当たり前だよね, というんだけど, 理屈ぽい人が出てきて, 当たり前というけどなんで当たり前なんだ, と言われたらちょっとたじろぐじゃないですか. 高校生でも, ある程度数学好きな人はそう思う. そういうエッと立ち止まったときに, 一押しというか, そのことに対してイメージでもいいけれども, 解説みたいなものが小説になっているというのはおもしろいと思う.
根上 言っていることはわかりますが, それだと数学だと思うな, やっぱり.
瀬山 小説ではなくて?
根上 小説仕立ての数学を求めるという意味では一つのMFでしょうけど, 数学者が求める行為と同じですよね. でも, その先はどうなっているのでしょうか. 日本では, 高校までたくさんの数学を勉強するのに, その先を見せてあげようという人が少ないと思いませんか.
映画の「マトリックス」のような, 現実感のある, でも, ウソのCGを見たときに, 実は2階微分でコントロールしているからいいんだとか(違うかもしれないけど), 言えるといいです. 微分を習ったからこそそういうふう見方ができる. こっちはチャチで, こっちはチャチじゃないということが指摘できるようになる. すると, 習ったことの先で自分の世界が広がっていくでしょう. そこを見せてあげたいんだよなあ. それがないから, 数学は役に立たない感じがする. 別にCG映像のリアルさの判定に役立つことが重要なわけではないけど, 数学の先の世界に触れたみたいな感じがする.
瀬山 数学の先の世界.
根上 ええ. もちろん, 三角不等式はなんで成り立つんだろうという探究心みたいなもの, それは数学者の心ですよね. それはそれで一つのあり方だと思うけれども, それだと世の中の人の2割しか関心をもたない. 数学が好きな人のなかの, さらにフィクションが好きだという人だけなら1割に減ってしまう.
瀬山 最初に言ったように, ぼくが数学を商売にするようになったそもそものきっかけが, 『第四次元の小説』だからというところがある.
それで高校生になった頃は, 遠山啓さんの『数学入門』を読んで, あれはフィクションでも何でもないけれども, 上巻の最後のほうに, 5次方程式は実は解けないのだと書いてある. 証明はもちろん書いてない. 5次方程式は解けないという話を読んで, 証明も書いてないとなると, 数学少年の心はかき乱されるわけです. どうして解けないのだろうと. 今だったら, それをやるためには, たとえばガロア理論の本を読みなさいとか, そういうことになっちゃうじゃないですか.
根上 そうですけど, 数学の啓蒙書と違わないですか, 求めているものが. それをMFといって, フィクションで脚色するところを, ぼくは一歩引いて「おちゃらけ」と言ったわけです. それはそれで悪くないけど, ちょっと….
わかってきたのは, ぼくが思う数学と瀬山先生の数学が違うことです. 先生のは, 伝えたいことが数学なのでしょう?
瀬山 そうです, 数学のおもしろさを伝えたい.
根上 それを伝える演出家としての瀬山士郎. それはわかるけど, ぼくが伝えたいものはぼくなんです. 根上生也とは書いてなくて, ぼくの小説のなかでは必ず「私」と書いてあって, 全部一人称なんです. ちゃっかり小説といいつつ, 実は全部伝記なんです. 伝記をフィクションにして仕立てている.
瀬山 私小説ね. ぼくの中には, 自分がこれだけおもしろいと思っている数学を, 世の中の人はどうしてそんなにおもしろがらないのだろうと思う心があるわけです. ぼくは数学というものをやっていてたいへんおもしろいと思うんです. 少なくとも自分が勉強した範囲で, 数学はどの分野も非常におもしろかった. それをほかの人たちは, 役に立つとか, 立たないとかという観点でバサッと切って, 役に立たないものなどやらなくてもいいよ, という.
だから, 少なくとも数式を羅列して数学をみせるだけではなくて, 自分がおもしろいと思っている数学のおもしろさはこういうことなのだということを, フィクションのかたちで提示したい. そういう感じが強いんですね.
根上 それはわかります. だから何がぼくと違うかというと, 数学が先生の外にあることです. 自分の外に一つのおもちゃとして数学があって, 「おもしろいよ」と言っている感じです.
瀬山 感じとしては, ぼくはそういうほうが近い.
根上 その感じはぼくだってないわけではないけれど, 現実に数学をやっている人たちの気持ちではない感じがする. 院生たちが一生懸命に数学を勉強して修論を書こうとか博士論文を書こうとか, または, 研究集会にやってきて, 一生懸命に数学をやっていますよね. その人たちが求めている数学ではない感じがする.
ぼくは, 数学をやっている人たちというか, 自分がほとんど数学になっている人たちの営みをどこかでみせたい. だから「私」というのは, 固有名詞ではなくて固有代名詞みたいな感じの「私」なわけです. そういう感じが伝えたい.
瀬山 なるほどね. かなりわかってきましたよ.
根上 たとえば, この前のオリンピックを見ているときに, 「今のは何秒だったかな」と楽しんでいるわけではないじゃないですか. マラソン選手は何秒ではないけど, 高橋尚子さんという人間がやったことに意味があるわけです. 銀をとったとか金をとったとか, そういう抽象的な命題, オリンピックで金メダルが何個とれましたという事実, それはそれでおもしろいかもしれないけれども, あくまでもそれは事実を表現している言語的記述でしかないわけでしょう. そうではなく, 彼ら日本人が本当にシドニーに行って 何かをしたこと自身をおもしろがっているわけです.
瀬山先生流のやり方は極端な比喩でいうと, テレビの映像がいっさいなく, 新聞の号外に「金メダル何個」と書かれているのを読んで, 「ああ, おもしろい」と言っているようで, 数学はやっぱり人間不在なのかというイメージを世に広めてしまいませんか, と言いたい.
瀬山 根上さんがMathematical Fiction と言っているものの正体がかなりよくわかってきた. そういうものを読みたい人はたくさんいるだろうし, それはそれでいい. 一方で, ブルーバックス流の通俗解説書, ぼくはこれは全然悪くないと思っている. ああいうものをたくさん出してくれるほうがいいと思っているのだけど, そういう数学的な事実を解説するのに, もうちょっと工夫のある解説があっていいだろう. そういうのが数学小説というスタイルが考えられる起源としてあったのですね.
◆ 「今月のMF」大募集!!
瀬山 本誌にも以前に何人か, 小説ではないけれども, フィクションとして書いた人がいましたね. ただ, おもしろくないとだめです. ストーリーがうまくできていて, なにやら数学のところは難しげなことが書いてあるなと思って読んでも, 読みおわったときにがっかりしないで, ああ, おもしろかったと思えるような話にしていないとだめ. そこがつらいところです.
根上 たとえばショートショートみたいなものを毎月連載できないでしょうかね. 1人が連載すると似たようなものばかりになるだろうから, 「NOTE」ではないけれども, MFの募集みたいにして.
瀬山 今月のMF? それはかなりおもしろい. 数学のショートショートを募集すると, 突拍子もないアイデアが出るかもしれないしね. ネタをもっている人はたくさんいるんじゃないか.
根上 それがMFになるかどうかを見たい. 「おちゃらけ学習系」に収まってしまうものが多くなることが予想されるので, 私たちが選者になりましょうか.
瀬山 案外, 『第四次元の小説』系統の, 要するに数学用語を散りばめた幻想小説というようなものが 出てくるかもしれませんね.
根上 でも, これは悪くない企画ですね. 編集部はどうですか? この企画を採用しませんか?